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Abstract. We solve a long-standing open problem of Shelah regarding the

Approachability Ideal I[κ+]. Given a singular cardinal ℵγ , a regular cardinal

µ ∈ (cf(γ),ℵγ) and assuming appropriate large cardinal hypotheses, we cons-
truct a model of ZFC in which ℵγ+1 ∩ cof(µ) /∈ I[ℵγ+1]. This provides a

definitive answer to a question of Shelah from the 80’s. In addition, assuming

large cardinals, we construct a model of ZFC in which the approachability
property fails, simultaneously, at every singular cardinal. This is a major

milestone in the solution of a question of Foreman and Magidor from the 80’s.

1. Introduction

The study of singular cardinals stands out as one of the most fascinating areas of
inquiry in modern set theory. It was Georg Cantor who first formalized the concept
of the infinite and initiated the investigation of the continuum. As part of his pio-
neering analysis, Cantor formulated the Continuum Hypothesis (CH), which posits
that the cardinality of R (i.e., 2ℵ0) is as small as possible—namely, ℵ1, the first un-
countable cardinal. The status of CH within the broader mathematical paradigm
remained elusive to many leading figures until Kurt Gödel [Göd40] showed that
CH cannot be refuted from the standard axioms of mathematics (ZFC), and later
Paul Cohen [Coh63, Coh64], inventing the set-theoretic method of forcing, showed
that CH cannot be proved from ZFC either. These two results established the in-
dependence of CH from the standard foundation of mathematics, setting the tone
for sixty years of groundbreaking discoveries in which the phenomenon of indepen-
dence played a central role. With the subsequent development of forcing, Easton
demonstrated that there are virtually no ZFC-provable restrictions on the behavior
of the power-set function κ 7→ 2κ [Eas70]. This inaugurated a series of results show-
ing that, at least for (so-called) regular cardinals—such as ℵ0 (the cardinality of
the integers) or ℵ1—ZFC alone settles little about cardinal arithmetic. Confound-
ing all expectations, a series of groundbreaking results pioneered by Galvin–Hajnal
[GH75], Silver [Sil75], Magidor [Mag77] and Shelah [She94] revealed that singular
cardinals (such as ℵω and ℵω1

) obey far deeper constraints, and that ZFC itself
proves remarkable structural theorems. For instance, a celebrated result of Shelah
shows that if 2ℵn < ℵω holds for all integers n then there is a provable upper bound
on 2ℵω . This is in stark contrast with power sets of regular cardinals, where no such
upper bound can be established in ZFC alone as per the work of Easton [Eas70].

Signs of the striking nature of singular cardinals have been found well beyond
the realm of cardinal arithmetic. A paradigmatic example is Shelah’s Singular
Compactness Theorem [She75] in infinite abelian group theory, which shows that
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every abelian group G that is ℵω-generated and almost free must be free. Magidor–
Shelah extensively studied such phenomena in their classical paper [MS94], and they
are now considered part of the standard landscape of the field. Singular cardinals
have also surfaced in functional analysis. Improving a classical, influential, work
by Gowers and Maurey [GM93], Dodos, López-Abad, and Todorcevic [DLAT11]
showed that, consistently, every Banach space of density character at most ℵω

contains an unconditional basic sequence—a result that is arguably optimal.

The present manuscript continues this major line of research in modern set theory
by analyzing a related core construction: Shelah’s approachability ideal, I[κ].

Let κ be a regular uncountable cardinal. A set S ⊆ κ is called stationary if it
intersects every club set C ⊆ κ – that is, it intersects every subset of κ that is closed
and unbounded in its ordinal topology. Intuitively speaking, club sets correspond
to measure one sets whereas stationary sets parallel sets having positive measure.
Stationarity is a cornerstone concept in infinitary combinatorics which has been
critically utilized in Module Theory [EM02, CP24], Cohomology [Ber21] or Analysis
[Far11, Far19, MP17] among many other areas in mathematics. In set theory, the
preservation of these objects after passing to generic extensions becomes pivotal in
the proof of some central results in the field [Mag82, CFM01, PRS23, BHU24].

In his classical paper [She79], Shelah introduced (if implicitly) the approacha-
bility ideal I[κ] and the corresponding notion of the approachability property APκ,
asserting that κ+ ∈ I[κ+] (i.e., I[κ+] is improper). Through an incisive analysis,
Shelah bridges I[κ] with the preservation of stationary sets under set-theoretic forc-
ing. Specifically, he shows that if S ⊆ κ ∩ cof(λ)1 is stationary and S ∈ I[κ] then
the stationarity of S is preserved by so-called <λ+-closed posets (see Section 2).
Thereby, under APκ any stationary set S ⊆ κ+∩ cof(λ) is preserved by <λ+-closed
forcing. This is somewhat sharp as if S /∈ I[κ], then even garden variety <λ+-closed
forcings, such as the Levy collapse Coll(λ, κ), destroy the stationarity of S.

Shelah showed that I[κ] is a normal ideal and demonstrated that it is rich enough
to contain many stationary sets. Namely, if λ < κ are both regular and λ+ < κ
then I[κ] contains a stationary subset of κ∩cof(λ). Moreover, if κ itself is a regular
cardinal then κ+ ∩ cof(<κ) ∈ I[κ+], and thus I[κ+] is completely determined by
membership of stationary subsets of κ+ ∩ cof(κ). As usual, the situation with
successors of singular cardinals is way more subtle – in this case ZFC can only
establish κ+∩cof(≤ cf(κ)) ∈ I[κ+]. Whether or not this result is sharp constitutes a
major problem and is one of the issues that is under investigation in this manuscript.

Ever since its conception, investigations of I[κ] have constituted a major area of
research in set theory. Today’s understanding of this subject has been substantially
enriched by the work of Shelah [She91, She93], Foreman–Magidor [FM95, FM97],
Mitchell [Mit09], Gitik–Krueger [GK09], Sharon–Viale [SV10], Gitik–Rinot [GR12],
Unger [Ung17], Cummings et al. [CFM+18], Krueger [Kru19], and Mohammadpour–
Velickovic [MV21a], among many other authors. Current interest in I[κ] extends
beyond its original connection with the preservation of stationary sets. This is
due to the interplay between I[κ] and other central principles in combinatorial set
theory, such as Jensen’s □κ-principle and its relatives, and the Tree Property (TP).

In turn, this connects I[κ] with two major questions in the field, which have
inspired the present work. Namely,

1κ ∩ cof(λ) is the standard notation for the collection of ordinals α < κ with cofinality λ.
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Question 1.1 (Shelah, 80’s). Let κ be a singular cardinal. Must the approacha-
bility ideal I[κ+] contain a club set relative to cofinality cf(κ)++?2

Question 1.2 (Foreman, Magidor, 80’s). Must there be a regular cardinal κ ≥ ℵ2

for which TPκ fails?

In the first part of the manuscript we provide a definitive, negative, answer to
Shelah’s Question 1.1 by proving the following consistency result:

Theorem A. Assume the GCH holds and that there is a supercompact cardinal.
Given a singular cardinal ℵγ and a regular cardinal µ ∈ (cf(γ),ℵγ) there is a model
of ZFC where ℵγ+1 ∩ cof(µ) /∈ I[ℵγ+1] holds.

Assuming the consistency of certain large cardinal axiom called a supercompact,
Shelah proved in [She79] the consistency of ZFC with ℵω+1 ∩ cof(ω1) /∈ I[ℵω+1].
Shelah’s argument was limited to cofinality ω1 (see page 9 for a discussion) and
so the author asked whether or not the statement ℵω+1 ∩ cof(ω2) /∈ I[ℵω+1] was
consistent with ZFC [For05, Question 8.3]. This particular instance of Question 1.1
remained open for quite a long time until it was recently answered in the affirma-
tive by Jakob–Levine in [JL25]. Subsequently, the first author extended this result
in [Jak25], constructing a model of ZFC in which, for every singular cardinal µ
of countable cofinality and every regular cardinal γ ∈ (ℵ0, µ), µ

+ ∩ cof(γ) /∈ I[µ+]
holds. In spite of these recent breakthroughs, Shelah’s problem remained unsettled.
The reason is that the methods developed in [JL25, Jak25] were largely specific to
singulars with countable cofinality due to their dependence on Namba-style forcings.
As a result, new and more sophisticated technologies must be developed. Among

the novelties offered by this paper there is the construction of a poset P(κ⃗, I⃗, B⃗)
which plays an analogue role to the Namba-like forcing from [JL25, §4], yet with the
advantage that it can dispose with uncountable cofinalities. This poset is inspired
by former constructions stemming from the theory of Prikry-type forcings [Git10].

In the vernacular language of this field, P(κ⃗, I⃗, B⃗) is an ideal-based version of a
Magidor-product of one-point Prikry forcings. This poset has the crucial property

that, in a model obtained via the two-step iteration P(κ⃗, I⃗, B⃗) ∗ ˙Coll(µ, (sup κ⃗)+),
every cofinal function from µ into (sup κ⃗)+ has an initial segment that is not covered
by any ground-model set of size < sup κ⃗. This is the key to show that in the corre-
sponding generic extension the stationary set (sup κ⃗)+∩cof(µ) is non-approachable.
Another technical novelty of the forcing P(κ⃗, I⃗, B⃗) is that its definition hinges on
ideals rather than ultrafilters. This makes the standard Prikry analysis of the poset
ostensibly more subtle than usual.

One of the key features of Prikry-type forcings is their amenability to a theory

of forcing iterations [Mag76, Git10]. After identifying P(κ⃗, I⃗, B⃗) as a member of
this family of posets we proceed to iterate the construction used in Theorem A to
obtain the following global result:

Theorem B. Assume the GCH and that there is a proper class of supercompact
cardinals. Then there is a model of ZFC where APκ fails for every singular cardinal.

Moreover, for each singular cardinal κ, there are unboundedly many regular car-
dinals δ < κ for which κ+ ∩ cof(δ) /∈ I[κ+].

2See [For05, Question 3.5] for a particular instance of this question. The problem is also posed
on page 1280 of [Eis10] where it is deemed a “major open problem in this area”.
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Theorem B is tied to Foreman–Magidor’s Question 1.2 via Jensen’s weak square
principle □∗

κ. A classical result of Jensen [Jen72] states that □∗
κ is equivalent to

the existence of a special κ+-Aronszajn tree; that is, a κ+-tree (T,<T ) admitting a
function f : T → κ such that x <T y implies f(x) ̸= f(y). The key feature of such
trees is that they remain κ+-Aronszajn (i.e., branchless) in any outer model of ZFC
where κ+ remains a cardinal. Consequently, special κ+-Aronszajn trees provide
strong failures of TPκ+ . Since □∗

κ implies APκ, Theorem B yields the first model
of ZFC in which no special κ+-Aronszajn trees exist for any singular cardinal κ.

It is widely recognized among specialists that getting the Tree Property at the
successor of every singular cardinal is one of the principal technical challenges in re-
solving Foreman–Magidor Question 1.2 (see e.g., [MS96, Nee09, Nee14, CHM+20a,
CHM+20b]). The methods developed here thus represent a substantial advance
toward the resolution of this second long-standing problem.

The paper is organized as follows. In Section 2 we present the reader with
preliminary definitions and results concerning colorings on successors of singular
cardinals and basic forcing facts for later use. In Section 3 we define the poset

P(κ⃗, I⃗, B⃗) and establish its key properties. After that we resolve Shelah’s problem
by proving Theorem A. As a bonus result, in this section we use our methods
to improve the main result of Gitik–Sharon [GS08]. In Section 4 we construct
the iteration that yields Theorem B. The paper is concluded with a section with
open questions and concluding remarks. The manuscript is self-contained, and the
notations herein follow the standard vernacular set theory. Only basic acquaintance
with the theory of forcing and large cardinals is presumed.

2. Preliminaries

2.1. Notations and conventions. Our forcing convention is that p ≤ q means
that p extends q. Given cardinals κ < λ, Coll(κ, λ) (resp. Coll(κ,<λ)) denotes the
usual Levy collapse collapsing λ (resp. every cardinal in (κ, λ)) to κ. Add(κ, λ)
denotes Cohen forcing adjoing λ-many subsets to κ. For regular cardinals λ < κ
we denote by either Eκ

λ or κ ∩ cof(λ) the set of all α < κ with cofinality λ. For
a regular cardinal Θ, H(Θ) denotes the collection of sets of hereditary cardinality
less than Θ. Given a function f and a set A, f [A] denotes {f(a) | a ∈ A}. Given an
ideal I on a (non-empty) set X we denote by I+ the collection of I-positive sets;
namely, I+ := {A ⊆ P(X) | A /∈ I}. Given an uncountable regular cardinal κ, we
say that I is <κ-complete if I is closed under <κ-sized unions of its members.

Some of the arguments in this paper will require using large cardinals. The
standard reference in this matter is Kanamori’s text [Kan94] where the reader is
referred for a more comprehensive exposition. For the sake of completeness, we
remind the definition of two key large cardinal notions: An uncountable cardinal
κ is measurable if there is a non-pricipal κ-complete ultrafilter on κ. We say that
κ is supercompact if for each λ ≥ κ there is an elementary embedding j : V → M
with critical point κ, j(κ) > λ and M closed under λ-sequences of its members.

2.2. Forcing. In this section we provide a few preliminaries on the method of set-
theoretic forcing. For the general theory of forcing we refer our readers to [Kun14].

Definition 2.1. Let (P,≤P) and (Q,≤Q) be posets. A function π : P → Q is a
projection if the following holds:

(1) π(1P) = 1Q.
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(2) If p′ ≤P p, then π(p′) ≤Q π(p).
(3) Whenever q ≤Q π(p), there is p′ ≤P p such that π(p′) ≤Q q.

If there exists a projection from P to Q, any forcing extension by Q can be forcing
extended to an extension by P. This is made precise via the next definition:

Definition 2.2. Let P and Q be posets and π : P → Q a projection. Let G be
Q-generic. In V [G], let P/G consist of all those elements p ∈ P with π(p) ∈ G,

ordered as a suborder of P. We let P/Q be a Q-name for P/Ġ and call P/Q the
quotient forcing of P and Q.

Fact 2.3. Let P and Q be poset and π : P → Q a projection. Let G be Q-generic
over V and let H be P/G-generic over V [G]. Then H is P-generic over V and
G = π[H]. In particular, V [G][H] = V [H]. □

Projections onto iterations are often obtained by considering the so-called termspace
forcing, an idea due to Laver and subsequently developed by Foreman [For83b]:

Definition 2.4 (Laver). Let (P,≤) be a poset and let (Q̇, ≤̇) be a P-name for a

poset. The poset T(P, Q̇) consists of all P-names for elements of Q̇, ordered by
q̇′ ≺ q̇ if and only if 1P ⊩ q̇′≤̇q̇.

Using standard arguments on names, one shows:

Lemma 2.5. Let P be a poset and Q̇ a P-name for a poset. The identity function
is a projection from P× T(P, Q̇) onto P ∗ Q̇. □

Recall that a poset P is separative if whenever p0 ̸≤ p, there is p1 ≤ p such that
p0 and p1 are incompatible. We also record the following easy lemma for later:

Lemma 2.6. Let P be a poset and Q̇ a P-name for a poset. If P forces that Q̇ is
separative, then T(P, Q̇) is separative.

Proof. Let q̇0, q̇ ∈ T(P, Q̇) be such that q̇0 ̸≺ q̇, i.e. 1P ̸⊩ q̇0≤̇q̇. Ergo there is p ∈ P
such that p ⊩ q̇ ̸ ≤̇q̇′. Since Q̇ is forced to be separative, by the maximum principle
we can find q̇′ such that p ⊩ (q̇′≤̇q̇)∧ (q̇′ ⊥ q̇0). Now let q̇1 be such that p ⊩ q̇′ = q̇1
and conditions incompatible with p force q̇′ = q̇1. Then q̇1 ≺ q̇ and clearly there is
no q̇′′ such that 1P ⊩ q̇′′≤̇q̇0, q̇1. In particular, q̇0 and q̇1 are ≺-incompatible. □

Definition 2.7. Let κ be an uncountable regular cardinal and P be a poset. We
say that P is <κ-closed if every ≤-decreasing sequence ⟨pα | α < θ⟩ of conditions
in P with θ < κ admits a ≤-lower bound. We say that P is <κ-directed closed if
every directed subset D ⊆ P of size <κ has a lower bound.3

We will later use posets which do not have lower bounds for arbitrary sequences
of a given length but only those which were constructed according to a nice strategy.

Definition 2.8. Let P be a poset and γ an ordinal. The completenss game G(P, γ)
is defined as follows: The game lasts γ many rounds. COM starts by playing 1P. At
any stage δ, we have a position (pα, qα)α<δ. Then COM has to play a condition pδ
which is a lower bound of (qα)α<δ and INC has to play a condition qδ ≤ pδ. COM
wins if they can continue to play for all γ many rounds. Otherwise, INC wins.

3Recall that D ⊆ P is called directed if any two conditions p, q are compatible via a member
of D.
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For a cardinal κ, we say that P is κ-strategically closed if COM has a winning
strategy in G(P, κ). We say that P is <κ-strategically closed if COM has a winning
strategy in G(P, γ) for every γ < κ.

Foreman was able to relate the distributivity of a poset P to the nonexistence
of a winning strategy for INC in the completeness game. This characterization
often proves very useful because it allows one to use distributivity assumptions to
construct sequences (pα)α<δ where pα depends on the history (pβ)β<α, knowing
that this construction will at least succeed once:

Theorem 2.9 (Foreman [For83a]). Suppose that P is a poset and κ is a cardinal.
Then P is <κ+-distributive if and only if INC does not have a winning strategy in
G(P, κ+ 1).

A critical fact connecting all the notions defined so far is due to Easton:

Fact 2.10 (Easton’s Lemma). Let κ be an uncountable regular cardinal. Assume
that P is κ-cc and Q is <κ-closed. Then:

(1) ⊩P×Q “κ is a regular uncountable cardinal”.

(2) ⊩P “Q̌ is <κ-distributive”.
(3) ⊩Q “P̌ is κ-cc”. □

Our posets will derive their regularity properties from being of Prikry-type.

Definition 2.11 (Gitik). Let (P,≤,≤0) be such that (P,≤) and (P,≤0) are posets
and ≤ refines ≤0. We say that (P,≤,≤0) is a Prikry-type forcing if whenever p ∈ P
and σ is a sentence in the forcing language, there exists q ≤0 p which decides σ.

Equivalently, (P,≤,≤0) is a Prikry-type forcing if and only if names for elements
of the ordinal 2 can be decided using ≤0- (i.e. pure or direct) extensions. This idea
leads to the following definition:

Definition 2.12. Let (P,≤,≤0) be a Prikry-type forcing and µ a cardinal.

(1) We say that (P,≤,≤0) has pure µ-decidability if whenever τ is a P-name
and p ∈ P forces τ < µ̌, there is α < µ and q ≤0 p such that q ⊩ τ = α̌.

(2) We say that (P,≤,≤0) has almost pure µ-decidability if whenever τ is a
P-name and p ∈ P forces τ < µ̌, there is α < µ and q ≤0 p such that
q ⊩ τ < α̌.

We now turn to the concept of iterating Prikry-type forcings. The most impor-
tant point here is that we want retain that any such iteration still has the Prikry
property. A notion of iteration which satisfies this property was invented by Magi-
dor in [Mag76]. These iterations can be defined with Easton support, non-stationary
and full support, but we will only use Easton-support iterations.

Definition 2.13. Let ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ be a sequence such that

each (Pα,≤α,≤α,0) is a poset and each (Q̇α, ≤̇α, ≤̇α,0) is a Pα-name for a Prikry-

type poset. We define the statement “((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ is an
Easton-support Magidor iteration of Prikry-type forcings of length ρ” by induction
on ρ.

((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ is an Easton-support Magidor iteration of

Prikry-type forcings of length ρ if ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ′ is an Easton-
support Magidor iteration of Prikry-type forcings of length ρ′ for every ρ′ < ρ and
moreover:
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(1) If ρ = ρ′ + 1, then (Pρ,≤ρ) := (Pρ′ ,≤ρ′) ∗ (Q̇ρ′ , ≤̇ρ′) and (p′, q̇′) ≤ρ,0 (p, q̇)

if and only if p′ ≤ρ′,0 p and p′ ⊩ q̇′≤̇ρ′,0q̇.
(2) If ρ is a limit, then Pρ consists of all functions p on ρ such that

(a) For all α < ρ, p ↾ α ∈ Pα,
(b) If ρ is inaccessible and |Pα| < ρ for every α < ρ, then there is some

β < ρ such that for all γ ∈ (β, ρ), p ↾ γ ⊩ p(γ) = 1Q̇γ
.

and the following holds:
(i) p′ ≤ρ p if and only if p′ ↾ ρ′ ≤ρ′ p ↾ ρ′ for every ρ′ < ρ and there exists

a finite subset b such that whenever ρ′ /∈ b and p ↾ ρ′ ̸⊩ p(ρ′) = 1Q̇ρ′
,

then p′ ↾ ρ′ ⊩ p′(ρ′)≤̇ρ′,0p(ρ
′).

(ii) p′ ≤ρ,0 p if and only if p′ ≤ρ p and the set b is empty.

We have the following (see [Git10, Section 6.3] or [JL25, Lemma 2.4]):

Lemma 2.14. Let ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ be an Easton support Magi-
dor iteration of Prikry-type forcings of length ρ. Let µ be a cardinal.

Assume that for each α < ρ, Pα forces that Q̇α has (almost) pure µ̌-decidability.
Then for each α < ρ, Pα has (almost) pure µ̌-decidability. □

Prikry-type forcings mostly derive their regularity properties from the Prikry
property together with the closure of their pure extension ordering. In iterations,
notice that the pure extension ordering on the iteration is not the same as the iter-
ation of the pure extension orderings. Despite this fact, since the regular ordering
refines the pure extension ordering, one checks easily that the usual proof of the
iterability of closure properties goes through:

Lemma 2.15. Let µ be a cardinal. Let ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ be an
Easton support Magidor iteration of Prikry-type forcings of length ρ. If µ is below
the first inaccessible cardinal and for each α < ρ, Pα forces that Q̇α is < µ̌-directed
closed, then each Pα is <µ-directed closed. □

Lastly, we show the existence of a nice projection for Prikry-type forcings (similar
to an idea of Foreman, see [For83b]).

Lemma 2.16. Let ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ be an Easton support Magi-

dor iteration of Prikry-type forcings of length ρ. Let T :=
∏

α<κ T((Pα,≤α), (Q̇α, ≤̇α,0)),
where the product is taken with Easton support. Then the identity is a projec-
tion from T onto the direct extension ordering on the Easton limit of the iteration
((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α<ρ. □

Proof. Let P be the Easton-support Magidor limit of ((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0)).
Recall that P consists of all functions p on κ such that p ↾ α ∈ Pα for all α < κ
and the support of p is an Easton set (i.e. it is bounded in every regular cardinal),
directly ordered by p ≤0 q if and only if p ↾ α ≤α,0 q ↾ α for all α < κ. Denote by
≤T the ordering on T.

It is clear that the identity is a function from T onto P and preserves ≤0: Let
t0, t1 ∈ T with t0 ≤T t1. Then t0 is a function on κ such that for each α < κ, t0(α)

is a (Pα,≤α)-name such that 1Pα
⊩ t0(α) ∈ Q̇α. It follows by induction on α that

t0 ↾ α ∈ Pα for every α < κ since we use the same support in both cases. For any
α < κ, 1Pα

⊩ t0(α) ≤0 t1(α). Ergo t0 ↾ α ⊩(Pα,≤α) t0(α)≤̇α,0t1(α). It follows again
by induction that t0 ↾ α ≤α,0 t1 ↾ α for every α < κ.
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Now we show that the identity is a projection. Let p ∈ P and t ≤0 p. We
want to find p′ ≤T p with p′ ≤0 t. By induction on α, let p′(α) be a (Pα,≤α)-

name for an element of Q̇α forced by p′ ↾ α to be equal to t(α) and by conditions
incompatible with p′ ↾ α to be equal to p(α). Then the support of p′ is equal to the
support of t and thus an Easton set. It follows by induction that p′ ↾ α ≤T p ↾ α
and p′ ↾ α ≤α,0 t ↾ α: For any α, by induction, p′(α) is in any case forced to be
below p(α): p′ ↾ α is in particular ≤-below t ↾ α and thus forces p′(α) ≤0 p(α) by
assumption and conditions incompatible with p′ ↾ α outright force p′(α) = p(α). It
also follows that p′ ↾ α ⊩ p′(α) = t(α) and thus p′ ↾ α+ 1 ≤α+1,0 t ↾ α+ 1. □

2.3. Approachability. In this section we garner for later use some standard no-
tations and facts around Shelah’s approachability ideal. For a more comprehensive
account on the matter we refer to Eisworth’s excellent handbook chapter [Eis10].

Definition 2.17. Let κ be a regular cardinal and ā = ⟨aα | α < κ⟩ a sequence of
bounded subsets of κ. A limit ordinal α < κ is called approachable with respect to
ā if there is an unbounded set A ⊆ α with otp(A) = cf(α) such that

{A ∩ β | β < α} ⊆ {aβ | β < α}.

Definition 2.18 (The approachability ideal). Let κ be a regular cardinal. A set
S ⊆ κ is in I[κ] if there is a sequence ā of bounded subsets of κ and a club C ⊆ κ
such that every α ∈ C ∩ S is approachable with respect to ā.

The terminology approachability ideal is justified by the following fact:

Fact 2.19 (Shelah). I[κ] is a (possibly improper) normal ideal on κ. □

It is not necessarily the case that I[κ] is a proper ideal. In fact, in this paper
we will construct a model where I[κ+] is improper for all singular cardinals κ. The
assertion that I[κ] is an improper ideal is known as the Approachability Property :

Definition 2.20 (Approachability). Let κ be a (possibly singular) cardinal. The
approachability property holds at κ if κ+ ∈ I[κ+]. We denote this by APκ.

Other standard facts about the ideal I[κ] and the approachability property that
we may not use in the paper but collect for the reader’s benefit are:

Fact 2.21 (Shelah). Let κ be a cardinal. Then, the following hold:

(1) For every two regular cardinals λ < κ with λ+ < κ there is a stationary set
S ⊆ κ ∩ cof(λ) in I[κ]. ([Cum05, Theorem 9.2])

(2) κ+ ∩ cof(<κ) ∈ I[κ+] provided κ is regular. ([She91, Lemma 4.4])
(3) κ+ ∩ cof(≤ cf(κ)) ∈ I[κ+] provided κ is singular. ([Eis10, Corollary 3.29])
(4) □∗

κ implies APκ. ([Cum05, p.262])
(5) If S ⊆ κ ∩ cof(µ) is a stationary set and P a <µ+-closed forcing then

⊩P “Š is stationary”. ([She79, Theorem 20]) □

If κ is regular then (2) implies that I[κ+] is completely determined by member-
ship to it of stationary subsets of the critical cofinality (i.e., κ). In contrast, if κ
is singular then there is a wide array of possible configurations for I[κ+], as only
κ+ ∩ cof(≤ cf(κ)) ∈ I[κ+] is provable. In Theorem A we show that this is the case.

Even though the approachability ideal I[κ] is always large, Shelah showed that
the existence of supercompact cardinals imposes certain non-trivial restrictions.
Namely,



ON SHELAH’S APPROACHABILITY IDEAL 9

Fact 2.22 (Shelah, [She79]). Suppose that κ is a supercompact cardinal and λ > κ
is a singular cardinal with cf(λ) < κ. Then, there is a singular cardinal θ < κ
of cofinality cf(λ) and a stationary set S ⊆ λ+ ∩ cof(θ+) that is not in I[λ+]. In
particular, APλ fails. □

In this paper we are mostly preoccupied with the failure of APλ at singular cardi-
nals λ. The standard way to produce the failure of the approachability property at
a down-to-earth cardinal (such as ℵω) traces back to Shelah [She79, Conclusion 29].
The basic idea is to start with a supercompact cardinal κ, let S ⊆ κ+ω+1 ∩ cof(θ+)
a stationary set exemplifying the failure of APκ+ω and then “bring it down” to
ℵω. Specifically, forcing with Coll(ℵ0, θ) ∗ ˙Coll(ℵ1, <κ) produces a generic exten-
sion where the original stationary set S remains stationary, non-approachable and
S ⊆ ℵω+1 ∩ cof(ω1). However, the property ℵω+1 ∩ cof(ω1) /∈ I[ℵω+1] was only
known to be true in the generic extension if θ+ was preserved as a cardinal. This
posed problems regarding the possible cofinalities at which AP could fail at small
cardinals and also in iterating such a construction to achieve the failure of AP at
many cardinals simultaneously. Due to this, most research surrounding the failure
of APλ for singular cardinals λ was focused on achieving this on a club of cardinals
(see e.g. the works of Ben-Neria et al. [BNLHU20] and Gitik [Git21a]).

A standard way to force the failure of AP at small singular cardinals is based on
a characterization of approachability via colorings, an idea that stems from [She79].

Definition 2.23 (Colorings). Let κ be singular and d : [κ+]2 → cof(κ) a coloring.

(1) We say that d is subadditive if for each α < β < γ < κ+,

d(α, γ) ≤ max{d(α, β), d(β, γ)}.

(2) We say that d is normal if for each i < cf(κ),

sup
α<κ+

|{β < α | d(β, α) ≤ i}| < κ.

(3) A point α < κ+ is d-approachable if there is an unbounded A ⊆ α with

sup{d(β, α) | β ∈ A} < cf(κ).

The collection of all d-approachable points will be denoted by S(d).

A useful characterization of d-approachable points that we will use is:

Fact 2.24 (Shelah). An ordinal α < κ+ is in S(d) if either cof(α) ≤ cof(κ) or there
is A ⊆ α unbounded and i < cof(κ) such that for each β < γ in A, d(β, γ) ≤ i. □

Additionally, we will be using the following statement due to Shelah which vastly
simplifies proofs of the preservation of non-approachability.

Fact 2.25 ([She79, Remark 28]). Suppose α < κ+ is d-approachable. Whenever
A ⊆ α is unbounded, there is B ⊆ A unbounded such that d ↾ [B]2 is bounded. □

It turns out that if κ is a singular cardinal and the GCH holds (or simply, if κ
is strong limit) the set of d-approachable points together with κ+ ∩ cof(cf(≤κ)))
generate the approachability ideal I[κ+] modulo non-stationary sets:

Fact 2.26 ([Eis10, Corollary 3.35]). Suppose that κ is a strong limit cardinal. Then,
S(d) ∪ (κ+ ∩ cof(cf(≤κ))) generates I[κ+] modulo non-stationary sets. □
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3. The solution to Shelah’s problem

In this section, we define a Prikry-type forcing that ensures the failure of APκ

at a singular cardinal κ of any prescribed cofinality. The forcing notion will be

a two-step iteration consisting of a Magidor-style product P(κ⃗, I⃗, B⃗) followed by a

Levy collapse of the form Coll(µ, (sup κ⃗)+). The poset P(κ⃗, I⃗, B⃗) is an ideal-based
version of a Magidor product of one-point Prikry forcings. To guarantee that this
poset satisfies both the Prikry and Strong Prikry properties and works as expected

we will need to impose certain restrictions on the input parameters (κ⃗, I⃗, B⃗). These
restrictions are captured by an enhancement of the Laver Ideal Property.

Definition 3.1. Let µ < ν be regular cardinals. We let LIP(µ, ν) state that there
exists I, a <ν-complete and normal ideal over ν such that there is a set B ⊆ I+

which is dense in I+ with respect to ⊆ and (B,⊆) is <µ-directed closed.4

A list of properties that suffice for a poset to force instances of LIP are:

Definition 3.2. Let µ < ν be regular cardinals with ν measurable. Let P be a
poset. We say that P is a LIP(µ, ν)-forcing if the following hold:

(1) P is separative, <µ-directed closed, ν-cc and is a subset of Vν .
(2) There is a club C ⊆ ν such that whenever α ∈ C is inaccessible, there is a

projection π : P → (P∩ Vα) such that whenever X ⊆ P is directed, |X| < µ
and p ∈ P∩ Vα satisfies p ≤ π(q) for every q ∈ X, there is p∗ ∈ P such that
π(p∗) = p and p ≤ q for every q ∈ X.

Remark 3.3. Coll(µ,<ν) is a LIP(µ, ν)-forcing whenever ν is measurable.

The proof of the following is as in [GJM78] and was first noticed by Laver:

Lemma 3.4 ([Jak25, Lemma 3.3]). Let µ < ν be regular cardinals such that ν is
measurable. Let P be a LIP(µ, ν)-forcing. Then P forces LIP(µ, ν). □

We will later consider an iteration of LIP-forcings. However, for technical reasons,
we will need to show that the corresponding termspace forcings (Definition 2.4) also
force LIP. This is provided by the following lemma:

Lemma 3.5. Let P be a poset and let Q̇ be a P-name for a poset. Let µ < ν be
regular cardinals such that ν is measurable. Assume that |P| < ν and P forces that

Q̇ is a LIP(µ̌, ν̌)-forcing. Then T(P, Q̇) is a LIP(µ, ν)-forcing.

Proof. First of all, T(P, Q̇) is <µ-directed closed by the Maximum Principle and

separative by Lemma 2.6. The small size of P easily implies that T(P, Q̇) ⊆ Vν .

Additionally, in combination with the measurability of ν, it also implies that T(P, Q̇)

is ν-cc: Assume that A ⊆ T(P, Q̇) is an antichain with size ν. For q̇, q̇′ ∈ A, there
exists p ∈ P such that p ⊩ q̇ ⊥ q̇′. (Otherwise, we would have 1P ⊩ q̇||q̇′ and could
apply the maximum principle to find a condition witnessing the compatibility.) So
we have a map from [A]2 → P. Since |A| = ν, which is measurable, and |P| < ν,
there is B ⊆ A with size ν and p ∈ P such that for every q̇, q̇′ ∈ B, p ⊩ q̇ ⊥ q̇′. But
then p forces that B is an antichain in Q̇, a contradiction.

So we have to find the projection. Again, the small size of P implies that for
almost all α, T(P, Q̇ ∩ V̇α) = (T(P, Q̇)) ∩ Vα. So if we let π̇α be a P-name for

4The difference compared to the version of LIP considered in [JL25, Definition 3.1] is that here
we require B to be <µ-directed closed.
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the projection Q̇ → Q̇ ∩ V̇α, we can map q̇ to π̇α(q̇α) and obtain a projection

from T(P, Q̇) to T(P, Q̇) ∩ Vα. (Here we again use the Maximum Principle.) Let

X ⊆ T(P, Q̇) be directed, |X| < µ and q̇ ∈ T(P, Q̇) ∩ Vα with q̇ ≺ π̇α(ṙ) for every
ṙ ∈ X. It follows that 1P forces that X̌ is directed and q̇≤̇π̇α(ṙ) for every ṙ in X.
By the maximum principle we can fix a P-name q̇∗ such that 1P forces π̇α(q̇

∗) = q̇
and q̇∗ ≤ ṙ for every ṙ ∈ X̌. Then q̇∗ is easily seen to be as required. □

We now define the following enhancement of LIP which is necessary for the
definition of the main Prikry-type forcing of this section:

Definition 3.6. An increasing sequence of regular cardinals ⟨µ⟩⌢⟨κi | i < γ⟩ with
γ < µ limit witnesses the Simultaneous Laver Ideal Property, SLIP(µ, ⟨κi | i < γ⟩),
if the following properties hold true for each ordinal i < γ:

(1) ⟨κi | i < γ⟩ is discrete; to wit, 2supj<i κj < κi holds for all i < γ.
(2) There is a <κi-complete ideal Ii over κi and a dense set Bi ⊆ I+

i with
respect to ⊆ such that the poset (Bi,⊆) is <µ-directed closed.

(3) For every i < γ, (
∏

j∈[i,γ) Bj ,⊆) is <(2supℓ<i κℓ)+-distributive.5

Remark 3.7. We emphasize that γ is not assumed to be regular, but just a limit
ordinal. This will be useful later to get instances of failure of the approachability
property at successors of singulars of the form ℵω+ω or ℵω1+ω.

The previous property is a weakening of the requirement that LIP(κ+
i , κi+1)

holds for every ordinal i < γ. The point is that in the construction of the forcing
iteration leading to Theorem A we will only be able to establish that the weaker
property SLIP(µ, ⟨κi | i < γ⟩) holds. As a result, we have to carry out our proofs
using this weaker assumption. The basic reason behind this is that, for an in-
creasing sequence ⟨κi | i < γ⟩ of measurable cardinals and µ < κ0 regular, the
iteration of Levy-collapses collapsing κ0 to µ and everything between (supj<i κj)

+

and κi to (supj<i κj)
+ forces LIP((supj<i κj)

+, κi); in constrast, the product of the
corresponding Levy-collapses only forces SLIP(µ, ⟨κi | i < γ⟩):

Lemma 3.8. Let γ be a limit ordinal and let ⟨κi | i < γ⟩ be an increasing
sequence of measurable cardinals. Let µ < κ0. For each i < γ, let Pi be a
LIP((2supj<i κj )+, κi)-forcing. Then the full-support product Q :=

∏
i<γ Pi forces

SLIP(µ, ⟨κi | i < γ⟩).

Proof. Let G be Q-generic and denote κ⃗ = ⟨κi | i < γ⟩. It is clear that, in V [G],
for each i < γ, 2supj<i κj < κi, just by the closure of the posets. For each i < γ,
let Gi be the Pi-generic filter induced by G. In V [Gi], let Ji and Bi witness

LIP(2(supj<i κj)
+

, κi). (This holds by Lemma 3.4.) In V [G], let Ii be the ideal
generated by Ji. We claim that (Ii,Bi)i<γ witness SLIP(µ, κ⃗) in V [G].

For each ζ < γ, define Qζ :=
∏

i<ζ Pi, and Qζ :=
∏

i∈[ζ,γ) Pi, so that

Q ≃ Qζ ×Qζ .

Claim 1. Let i < γ. Then Ii is <κi-complete in V [G].

Proof. By definition, Ii = {A ∈ PV [G](κi) | ∃B ∈ Ji (A ⊆ B)}. Let (Aα)α<θ<κi be
a sequence in V [G] consisting of members of Ii. Without loss of generality, Aα ∈ Ji

for all α < θ. Since V [G] is an extension of V [Gi] using the product Qi × Qi+1

5Our convention here is that (2supj<0 κj )+ := µ.
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and Qi+1 is <κ+
i -closed in V , and thus <κ+

i -distributive in V [Gi], it follows that
(Aα)α<θ<κi ∈ V [

∏
j≤i Gj ]. On the other hand, Qi is a κi-cc poset in V [Gi] (in

fact, it has cardinality ≤ 2supj<i κj , which is below κi). As a result, we can find a
sequence (Xα)α<θ ∈ V [Gi] consisting of Xα ⊆ [Ji]

<κi such that Aα ∈ Xα. By the
<κi-completeness of Ji in V [Gi] we deduce that

⋃
α<θ Aα ∈ Ji ⊆ Ii. □

The more substantial claim is the following:

Claim 2. Let ζ < γ and i ∈ [ζ, γ). Let Hζ be the Qζ-generic filter induced by G.
In V [Hζ ], Bi is dense in the dual of the ideal generated by Ji and < (2supj<ζ κj )+-
directed closed.

Proof. Let Ki be the ideal generated by Ji in V [Hζ ]. The model V [Hζ ] is an
extension of V [Gi] using

∏
j∈[ζ,γ),ζ ̸=i Pi =

∏
j∈[ζ,i) Pj ×

∏
j∈(i,γ) Pj . The second

part again adds no new subsets of κi and thus does not violate the density of Bi.
The first part has size <κi and thus it also does not violate the density of Bi as
shown by the next argument: Whenever τ is a

∏
j∈[ζ,i) Pj-name for an element of

K̇+, forced by p, there is q ≤ p such that the set of all elements of κi forced by q
to be in τ is in Ji, by the completeness of Ji (i.e., κi-completeness) and the small
size of the poset (i.e., <κi). Ergo we can find X ∈ Bi such that q ⊩ X̌ ⊆ τ .

Since V [Hζ ] is an extension of V [Gi] using a < (2supj<ζ κj )+-closed poset, Bi is
still < (2supj<ζ κj )+-directed closed in that model. □

Thereby, every Bi is <µ-directed closed in V [G] = V [H0]. For the distributivity
of (

∏
j∈[ζ,γ) Bj ,⊆) we argue as follows. Fix ζ < γ. In V [Hζ ], the poset

(
∏

i∈[ζ,γ) Bi,⊆)

is < (2supj<ζ κj )+-directed closed. Since V [G] is an extension of V [Hζ ] using Qζ (a
poset with the <(2supj<ζ κj )+-cc), Easton’s lemma (Lemma 2.10) implies that, in
V [G],

∏
i∈[ζ,γ) Bi is still < (2supj<ζ κj )+-distributive. □

Remark 3.9. In Section 4, we will assume that the GCH holds and our sequence
⟨κi | i < γ⟩ will be continuous (i.e. only those κ?i with i a successor will be
measurable). Consequently, there we will be concerned with LIP(κ++

i , κi+1)-forcing
notions.

3.1. The main forcing. Our setup assumptions for the rest of the section are:

Setup 3.10. We assume that ⟨µ⟩⌢⟨κi | i < γ⟩ is an increasing sequence of regular
cardinals witnessing SLIP(µ, ⟨κi | i < γ⟩). We set κ⃗ = ⟨κi | i < γ⟩ and κ for the
limit of this sequence. Finally, we denote the witnessing sequence of ideals and

(subsets) of positive sets as I⃗, B⃗, respectively.

The main Prikry-type poset of the section is:

Definition 3.11. Let P(µ, κ⃗, I⃗, B⃗) be the poset consisting of sequences

p = ⟨pi | i < γ⟩ ∈
∏

i<γ(κi ∪ Bi)

whose support supp(p) := {i < γ | pi /∈ Bi} is finite.

Given conditions p, q, write p ≤ q if supp(p) ⊇ supp(q) and for each i < γ:

(1) pi = qi if i ∈ supp(q);
(2) pi ∈ qi if i ∈ supp(p)∖ supp(q);
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(3) pi ⊆ qi otherwise.

We write p ≤0 q if p ≤ q and supp(p) = supp(q).

This poset can be viewed as a form of a Laver-style Namba forcing. However,
it is defined as a product instead of possessing the form of a tree. This is because
of the following problems: On one hand, if we take the version of higher Namba
forcing where the trees have height some cardinal κ and any stem of length <κ, it
is unclear whether this forcing has the Prikry property. On the other hand, if we
take trees of height some cardinal κ which split at cofinitely many levels, already
the first branch of length ω is generic and thus does not have a defined successor

set. Thanks to the discreteness of κ⃗ and the “closure properties” of I⃗ and B⃗ we

will be able to identify (P(µ, κ⃗, I⃗, B⃗),≤,≤0) as a Prikry-type forcing. However, the
arguments will be much more technical.

The poset P is quite similar in its design to the poset used by Gitik [Git19]. The
main difference is that here we are using ideals instead of ultrafilters but we can
circumvent this hurdle by taking really good care in the arguments.

The following is an immediate consequence of B⃗ being <µ-directed closed:

Lemma 3.12. ⟨P(µ, κ⃗, I⃗, B⃗),≤0⟩ is <µ-directed closed and <κ0-closed. □

Remark 3.13. The <µ-directed-closure of the poset does not play any role in the
analysis of this section. It will critical in Section 4 when we define the iteration
yielding Theorem B. Indeed, the directed closure is one of the cruxes of Theorem 4.5
that ensures that the failure of AP is preserved during the iteration.

From basic cardinal computations we deduce the following:

Lemma 3.14. Assume the GCH. Then P(µ, κ⃗, I⃗, B⃗) has the κ++-cc. □

Now turn to define the minimal extensions of a condition:

Definition 3.15. Let p ∈ P(µ, κ⃗, I⃗, B⃗), i /∈ supp(p) and α ∈ p(i). The one-point
extension of p by α, p↷(i, α), is the sequence q = ⟨qj | j < γ⟩ defined as follows:

(1) supp(q) = supp(p) ∪ {i}.

(2) qj :=

{
pj , if j ∈ supp(p);

α, otherwise.

Given a finite set I ⊆ γ \ supp(p) and ordinals α⃗ = ⟨α0, . . . , α|I|−1⟩ ∈
∏

i∈I p(i), the
sequence p↷(I, α⃗) is defined by recursion in the obvious manner.

Lemma 3.16. Let p ∈ P(µ, κ⃗, I⃗, B⃗), I ⊆ γ \ supp(p) and ordinals α⃗ ∈
∏

i∈I p(i).

Then, p↷(I, α⃗) is a condition in P(µ, κ⃗, I⃗, B⃗) and p↷(I, α⃗) ≤ p □

The next easy observation will be critical later on:

Lemma 3.17. Let p ∈ P(µ, κ⃗, I⃗, B⃗) and I ⊆ γ \ supp(p) finite. Then,

{p↷(I, α⃗) | α⃗ ∈
∏

i∈I p(i)}

is a maximal antichain ≤-below p with size <κmax(I)+1. □

Convention 3.18. To simplify notations hereafter we write P instead of P(µ, κ⃗, I⃗, B⃗).
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In our work, the poset P plays a similar role to that of Cohen forcing in the
original Mitchell poset (see [Mit72]): On its own, the Levy-collapse Coll(µ, κ+) has
the property that every initial segment of the added surjection from µ onto κ+ lies
in the ground model (by the <µ-closure of the poset). However, Mitchell noticed
that by using Cohen forcing Add(τ, 1) (for τ < µ) before the Levy-collapse, the

iteration Add(τ, 1) ∗ ˙Coll(µ̌, κ̌+) has the opposite property: Every new function
from µ into the ordinals has an initial segment which does not lie in the ground
model. This is key to his proof that in a Mitchell-generic extension – collapsing
a Mahlo cardinal to become µ+ – APµ fails. In our case, we will be obtaining an
even stronger statement (for a smaller class of sequences): After forcing with the

iteration P ∗ ˙Coll(µ̌, κ̌+), every surjection from µ into κ+ has an initial segment
which is not even covered by a ground-model set of size <κ. This will be shown in
Lemma 3.24 as a culmination of a Prikry analysis of P and is key for our goal which
is showing that P ∗ ˙Coll(µ̌, κ̌+) does not make κ+ d-approachable with respect to
any normal coloring d on κ+ in the ground model.

Let us now prove that this poset works as intended. We first have to show that
the poset has the Strong Prikry Property. From this we will derive both the Prikry
Property and the κ0-pure decidability property (see Definition 2.12).

One notable difference between this poset and the Laver-style Namba forcing
considered in [JL25, §4] is that the latter can eventually decide names for ordinals
below any κn. (Because any condition will eventually have a sufficiently long stem.)
This implies that the poset does not add bounded subsets of κ. However, since we
are using conditions of potentially uncountable length we will also be e.g. adding
new subsets of supn κn and thus bounded subsets of κ.

Lemma 3.19. (P,≤,≤0) has the Strong Prikry property. Namely, for each condi-
tion p ∈ P and a dense open set D ⊆ P there is q ≤0 p and I ⊆ γ \ supp(q) finite
such that for each α⃗ ∈

∏
i∈I q(i), q

↷(I, α⃗) ∈ D.

Proof. Given a condition r ∈ P we will say that r is good (resp. really good) if it
witnesses the conclusion of the lemma (resp. by taking q = r). If r is not good we
will say that r is bad. Note that if r is bad any ≤0-extension of it is bad as well.

Toward a contradiction, let us assume that the given condition p is bad.

Claim 1. Given an index i /∈ supp(p) there is q ≤0 p such that q ↾ i = p ↾ i and
q↷(i, α) is bad for all α ∈ q(i).

Proof of claim. Let W denote the positive set p(i). For each α ∈ W the set Dα

consisting of all q ∈
∏

j∈(i,γ) Bj such that either (p ↾ i)⌢⟨α⟩⌢q is bad or there is

r ≤0 p ↾ i such that r⌢⟨α⟩⌢q is really good is dense open. (Note that this may be
false if we replace “really good” by “good”.) By <κ+

i -distributivity of the poset
(
∏

j∈(i,γ) Bj ,⊆), the set D =
⋂

α∈W Dα is dense in
∏

j∈(i,γ) Bj as well. Let q∗ ∈ D.

We split W into two disjoint sets as follows:

W0 := {α ∈ W | (p ↾ i)⌢⟨α⟩⌢q∗ is bad},

W1 := {α ∈ W | ∃r ≤0 (p ↾ i) (r⌢⟨α⟩⌢q∗ is really good)}.
Suppose that W0 ∈ I+

i . Then, there is Z ∈ Bi such that Z ⊆ W0 (by density of
Bi). Let q be defined as (p ↾ i)⌢Z⌢q∗ ≤0 p. Clearly, q is as wished.
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Suppose otherwise that W1 ∈ I+
i . For each α ∈ W1 there is a condition rα and

a finite set Iα ⊆ γ witnessing the property. Note that there are at most 2supj<i κj -
many of such rα’s and by assumption 2supj<i κj < κi. Additionally, there are at
most γ many such Iα’s and γ < κ0. Hence, by <κi-completeness of I+

i and density
of Bi, there is Z ⊆ W1 in Bi and r∗, I∗ such that r∗ = rα and Iα = I for all α ∈ Z.
Let q = r∗⌢⟨Z⟩⌢q∗. Clearly, q ≤0 p. A moment of reflection makes clear that p is
good as witnessed by q and I = I∗ ∪{i}. But we were assuming that p was bad, so
W1 cannot be Ii-positive, which rules out this second alternative.

Therefore, it has to be the case that W0 ∈ I+
i and so q is as wished. □

Without loss of generality, suppose that supp(p) = ∅. Now we use the previous
claim to survey over all possible extensions of p. More precisely, we define, by
induction, a ≤0-decreasing sequence ⟨qδ | δ < γ⟩ in P with the property that for
each I ∈ [δ]<ω and α⃗ ∈

∏
i∈I qδ(i), qδ

↷(I, α⃗) is bad.

Suppose we have succeeded in defining ⟨qδ | δ < ϵ⟩.
Case ϵ is limit: In this case we simply take a ≤0-lower bound qϵ for this sequence.

Notice that this choice works: Given any I ∈ [ϵ]<ω and α⃗ ∈
∏

i∈I qϵ(i) there is an
index δ < ϵ such that qϵ

↷(I, α⃗) ≤0 qδ
↷(I, α⃗) and the latter condition is bad. By

transitivity of the property of being bad, it follows that qϵ
↷(I, α⃗) is bad as well.

Case ϵ is successor: Suppose that ϵ = ϵ̄+ 1. Let {(Ii, α⃗i) | i < θ} be an enumer-
ation of all possible finite subsets of ϵ̄ and α⃗i ∈

∏
j∈I qϵ̄(j).

For each i < θ let us consider the set of all possible “bad tails”:

Di = {q ∈
∏

j∈[ϵ̄,γ) Bj | ∀β ∈ q(ϵ̄) ((qϵ̄ ↾ ϵ̄⌢q)↷(Ii, α⃗i)
↷(ϵ̄, β) is bad)}.

This set is clearly dense in (
∏

j∈[ϵ̄,γ) Bj ,⊆) as per the previous claim.

Note that θ ≤ supη<ϵ̄ κη, since there are at most |ϵ̄|-many finite subsets of ϵ̄ and
any α⃗i is a function from Ii into supη<ϵ̄ κη. As a result, we can let q ∈

⋂
i<θ Di,

which exists by <(supη<ϵ̄ κη)
+-distributivity. Clearly, pϵ = (pϵ̄ ↾ ϵ̄)⌢q is as desired.

After this construction we obtain a ≤0-decreasing sequence ⟨pδ | δ < γ⟩. In the
end, we let p∗ be a ≤0-lower bound for this sequence (which exists because γ < κ0).
As in the limit case before, p∗↷(I, α⃗) is bad for every I ∈ [γ]<ω and α⃗ ∈

∏
i∈I p

∗(i).

By density of D there is q ≤ p∗ inside it. Let (I, α⃗) be such that q ≤0 p∗↷(I, α⃗).
By the previous comments, p∗↷(I, α⃗) is bad, and as a result so is q as well. However,
q ∈ D, so it must be really good. This yields the desired contradiction. □

The previous proof in fact gives the following fusion-like Strong Prikry Property:

Lemma 3.20. For each condition p ∈ P, i ∈ (max(supp(p)), γ) and a dense open
set D ⊆ P there is q ≤0 p with q ↾ i = p ↾ i and I ⊆ γ \ supp(q) finite such that for
each α⃗ ∈

∏
i∈I q(i), q

↷(I, α⃗) ∈ D.

Proof sketch. Run the same argument as in the previous lemma with the only
difference that in the construction following Claim 1 the conditions qδ are taken in
such a way that they agree up to coordinate i. □

For each i < γ let ≤i
0 denote the subordering of ≤0 defined by

p ≤i
0 q ⇔ p ≤0 q and p ↾ i = q ↾ i.

Note that (P,≤i
0) is <κi-closed. This has the following important consequence:

Lemma 3.21. Forcing with P preserves κ+.
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Proof. Suppose that this is not the case. Then, there is a condition p ∈ P, a regular
cardinal λ < κ and a P-name ḟ such that p ⊩ “ḟ : λ̌ → κ̌+ is cofinal”. Let i < γ be
an index such that κi > λ. For each α < λ let Dα be the dense set of conditions
in P deciding a value for ḟ(α). Using Lemma 3.21 and the closure of ≤i

0 we can
find a ≤i

0-decreasing sequence of conditions ⟨pα | α ≤ λ⟩ below p which for each

α < λ there is a finite set Iα ⊆ γ \ supp(p) such that pα
↷(Iα, θ⃗) ∈ Dα for all

θ⃗ ∈
∏

i∈Iα
pα(i). For each α < λ let ∆α be the set of all possible decisions; namely,

∆α = {β < κ+ | ∃θ⃗ ∈
∏

i∈Iα
pα(i) (pα

↷(Iα, θ⃗) ⊩ ḟ(α̌) = β̌)}.

This set is of cardinality <κ+. Therefore, there is ρα < κ+ such that sup∆α < ρα.
By regularity of κ+ (in V ) the supremum of all of these ρα’s (call it ρ) must be

below κ+. We claim that pλ forces “range(ḟ) ⊆ ρ̌” which will yield a contradiction.

Let α < λ and q ≤ pλ deciding the value of ḟ(α̌). Without loss of generality,

q ≤ pα
↷(Iα, θ⃗) for some of such θ⃗. Therefore, q ⊩ ḟ(α̌) < θ̌α < θ̌. By density, pλ

has the sought property, which completes the proof. □

We can derive the Prikry property from the strong Prikry property. We prove
that (P,≤,≤0) has pure <κ0 decidability which clearly implies that (P,≤,≤0) has
the Prikry property.

Lemma 3.22. Let p ∈ P be a condition and τ a P-name such that p ⊩P τ < µ̌ for
some µ < κ0. Then, there is p∗ ≤0 p and δ < κ0 such that p∗ ⊩P τ = δ̌.

Proof. Let D = {q ∈ P | q ⊥ p ∨ ∃δ (q ⊩P τ = δ̌)}. This is clearly dense open, so
that there is p∗ ≤0 p and I ⊆ γ finite such that p∗↷(I, α⃗) ∈ D for all α⃗ ∈

∏
i∈I p

∗(i).
Suppose that q was chosen so that I is as small as possible.

We claim that I = ∅ thus establishing the lemma. Suppose otherwise, and set
J := I \ {max(I)}. For each ordinal β ∈ p∗(max(I)) let fβ :

∏
j∈J p∗(j) → µ be

the function defined as α⃗ 7→ δ(α⃗⌢⟨β⟩) where δ(α⃗⌢⟨β⟩) is such that

p∗↷(I, α⃗⌢⟨β⟩) ⊩ τ = δ̌(α⃗⌢⟨β⟩).

Since I⃗(max(I)) is a κmax(I)-complete ideal and there are <κmax(I)-many of such
functions there is a I(max(I))-positive set W ⊆ p∗(max(I)) and a function f such
that fβ = f for all β ∈ W . By density of Bmax(I) we can assume that W ∈ Bmax(I).
Let q ≤0 p∗ be the condition obtained after replacing p∗(max(I)) by W . It follows

that for every β⃗⌢⟨α⟩ ∈
∏

i∈I q(i), q
↷(I, β⃗⌢⟨α⟩) ⊩ τ = f(β⃗). Therefore, already

q↷(J, β⃗) decides τ , which contradicts the minimality of I. □

Let Q̇ be a P-name for a forcing poset. One can naturally define a “Prikry order”
≤0 on the two-step iteration P ∗ Q̇ by stipulating that

(q, ḋ) ≤0 (p, ċ) if and only if q ≤0 p and q ⊩P ḋ ≤Q̇ ė.

Lemma 3.23. The poset (P ∗ Q̇,≤,≤0) has the Strong Prikry Property; namely,

given (p, q̇) ∈ P ∗ Q̇ and a dense open set D ⊆ P ∗ Q̇ there is (q, ḋ) ≤0 (p, ċ) and

I ⊆ γ \ supp(q) finite such that for each α⃗ ∈
∏

i∈I q(i), (q
↷(I, α⃗), ḋ) ∈ D.

Proof. Look at E := {q ∈ P | ∃ḋ (q, ḋ) ≤ (p, ċ) ∧ (q, ḋ) ∈ D}. Clearly, E is dense
open for P. By the Strong Prikry Property applied to this poset we find q ≤0 p
and I ⊆ γ \ supp(q) finite such that for each α⃗ ∈

∏
i∈I q(i), q

↷(I, α⃗) ∈ E. This

means that for each α⃗ there is a P-name ḋα⃗ such that (q↷(I, α⃗), ḋα⃗) ∈ D. Since
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{q↷(I, α⃗) | α⃗ ∈
∏

i∈I q(i)} forms a maximal antichain below q we can use themixing

lemma so as to produce a P-name ḋ such that q↷(I, α⃗) ⊩ ḋ = ḋα⃗. A moment’s

reflection makes clear that (q, ḋ) is the sought condition. □

Now we can show the key lemma underpinning our analysis of approachability:

Lemma 3.24. Let Ċ be a P-name for a γ+-closed poset. Let Ḟ be a P∗ Ċ-name for
a cofinal function from θ̌ into κ̌+, where θ ∈ (γ, κ0) regular, forced by a condition

(p, ċ) ∈ P∗Ċ. Then there is (q, ḋ) ≤0 (p, ċ) and ζ < θ such that for no (r, ė) ≤ (q, ḋ)

and x ∈ V with |x| < κ, (r, ė) ⊩ range(Ḟ ↾ ζ̌) ⊆ x̌.

Proof. The following is the key claim. Roughly speaking it shows that for any
condition (p′, ċ′) and i /∈ supp(p′) there is a ≤0-extension (p′′, ċ′′) and ζ < θ such
that the “canonical” maximal antichain at coordinate i, {(p′′↷(i, β), ċ′′) | i ∈ p′′(i)},
decides at least κi-many different possibilities for Ḟ (ζ). Establishing the existence

of such a condition which has that property for every i will show that range(Ḟ )
cannot be covered by a ground model set of size <κ. To simplify notations later on,
let us assume that the initial condition (p, ċ) is just the trivial condition in P ∗ Ċ.

Claim 2. Let (p′, ċ′) ∈ P ∗ Ċ and i /∈ supp(p′). Then, there is (p′′, ċ′′) ≤0 (p′, ċ′),
ζ < θ and a sequence ⟨Aβ | β ∈ p′′(i)⟩ of disjoint sets such that for each β ∈ p′′(i),

(p′′↷(i, β), ċ′′) ⊩ Ḟ (ζ) ∈ Ǎβ .

Proof of claim. The claim is established after combining the Strong Prikry Property
of P ∗ Q̇ (Lemma 3.23) with the <κ+

i -distributivity of B = (
∏

j∈(i,γ) Bj ,⊇).

Towards a contradiction, suppose that the claim was false. We will exhibit a
winning strategy for INC in the completeness game G(B, κi+1) (see Definition 2.8).
By Foreman’s theorem (see Theorem 2.9), this will yield a contradiction with B
being <κ+

i -distributive.

Suppose we have constructed ⟨(Aβ , ζβ , rβ , ⟨pβ , qβ⟩, ċβ) | β < β∗⟩ such that:

• Aβ ⊆ κ+ of size <κ and Aβ ∩Aβ′ = ∅ for β ̸= β′.
• ζβ is an ordinal below θ.
• rβ ≤0 p′ ↾ i. (I.e., rβ is the “low part” of a condition in P.)
• ⟨pβ , qβ⟩ is a move in the game G(B, κi + 1).

• (r⌢β ⟨β⟩⌢qβ , ċβ) ⊩ Ḟ (ζ̌β) ∈ Ǎβ .

Assume that ⟨(pβ , qβ) | β < β∗⟩ has been already played in G(B, κi+1). First COM
moves6 pβ∗ and let INC makes its move. The second player INC moves as follows.

First, since ((p′ ↾ i)⌢⟨β∗⟩⌢pβ∗ , ċ′) forces “Ḟ : θ̌ → κ̌+ is cofinal”, this condition itself

forces “∃ζ < θ̌ (Ḟ (ζ) /∈
⋃

β<β∗ Ǎβ)” (note that this union has cardinality <κ+).

Let (p′β∗ , ċ′β∗) ≤0 ((p′ ↾ i)⌢⟨β∗⟩⌢pβ∗ , ċ′) decide this ordinal ζ < θ – denote it ζβ∗ .

It follows that (p′β∗ , ċ′β∗) ⊩ Ḟ (ζ̌β∗) /∈
⋃

β<β∗ Ǎβ . By Lemma 3.23 there is a further

pure extension (p′′β∗ , ċβ∗) ≤0 (p′β∗ , ċ′β∗) and a finite set I ⊆ γ \ supp(p′′β∗) such that

for every α⃗ ∈
∏

i∈I p
′′
β∗(i), (p′′β∗

↷(I, α⃗), ċβ∗) decides the value of Ḟ (ζ̌β∗). Note that
the set of decisions

Aβ∗ := {η < κ+ | ∃α⃗ ∈
∏

i∈I p
′′
β∗(i) (p′′β∗

↷(I, α⃗), ċβ∗) ⊩ Ḟ (ζ̌β∗) = η̌}

6If COM could not move then we would have already described a winning strategy for INC.
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is of size <κ because so is the antichain {p′′β∗
↷(I, α⃗) | α⃗ ∈

∏
i∈I p

′′
β∗(i)}. Also,

Aβ∗ ∩
⋃

β<β∗ Aβ = ∅.

After this construction, we set rβ∗ := p′′β∗ ↾ i and let INC play qβ∗ = p′′β∗ \ i+ 1.

We claim that the above produces a winning strategy for INC in G(B, κi + 1).
Suppose that this was not the case and that {(pβ , qβ) | β < κi} was a winning
play for COM in the game G(B, κi +1). Let p∗ be a lower bound for this sequence.
Since θ < κ0 and 2supj<i κj < κi there is W ⊆ p∗(i) in Bi, ζ

∗ < θ and r∗ a low

part such that ζβ = ζ∗ and rβ = r∗ for all β ∈ W . Let p′′ := r∗⌢⟨W ⟩⌢p∗. Let ċ′′

be the mixing name of the P-names {ċβ | β ∈ W}. By construction, it follows that
(p′′, ċ′′) ≤0 (p′, ċ′) witnesses together with (ζ, ⟨Aβ | β ∈ W ⟩) the conclusion of the
claim. Since we were assuming that no such ≤0-extension of (p′, ċ′) exists it must
be the case that COM cannot form such a lower bound, p∗. In turn, this shows that
the above procedure describes a winning strategy for INC in G(B, κi+1). However,
this is impossible by Foreman’s theorem, which yields the final contradiction. □

Next we use the previous claim to complete the proof of the lemma. By induction
define a ≤0-sequence of conditions ⟨(pi, ċi) | i < γ⟩ witnessing the previous lemma
relative to sets ⟨Ai

β | β ∈ pi(i)⟩. At limit stages we take a ≤0-lower bound to the

previously constructed sequences (which exists in that Ċ is forced to be γ+-closed)

and then apply Claim 2.7 Let (q, ḋ) be a ≤0-lower bound for this sequence and set
ζ := supi<γ ζi. Since γ < θ and θ is regular it follows that ζ < θ.

Suppose towards a contradiction that there is x ∈ V , |x| < κ and a condition

(r, ė) ≤ (q, ḋ) forcing “ range(Ḟ ↾ ζ̌) ⊆ x̌”. Let i < γ, i /∈ supp(r), such that
|x| < κi. Then, since r(i) is a κi-sized subset of pi(i) there must be some β ∈ r(i)
such that x ∩Ai

β = ∅. However, by our construction,

(r↷(i, β), ė) ≤ (pi
↷(i, β), ċi) ⊩ Ḟ (ζ̌i) ∈ Ǎi

β ,

and by assumption, (r↷(i, β), ė) ⊢ Ḟ (ζ̌i) ∈ x̌, a contradiction. □

Corollary 3.25. Let θ ∈ (γ, κ0) be any regular cardinal. After forcing with

P ∗ ˙Coll(θ̌, κ̌+), κ+ is not d-approachable with respect to any normal, subadditive
coloring d : [κ+]2 → cf(κ) from the ground model.

Proof. Suppose that κ+ was forced by P ∗ ˙Coll(θ̌, κ̌+) to be d-approachable. Then,

there is a condition (p, ċ), a name Ȧ and an ordinal j < cf(κ) such that (p, ċ)

forces “Ȧ is unbounded in κ+” and “∀β0, β1 ∈ Ȧ (β0 < β1 → ď(β0, β1) ≤ ǰ)” (see

Fact 2.24.) Let Ḟ : θ̌ → κ̌+ be a P∗ ˙Coll(θ̌, κ̌+)-name for the increasing enumeration

of Ȧ. By Lemma 3.24 there is (q, ḋ) ≤0 (p, ċ) and i < θ such that for no (r, ė) ≤ (q, ḋ)

and x ∈ V with |x| < κ, (r, ė) ⊩ range(Ḟ ↾ ǐ) ⊆ x̌. By extending (q, ḋ) is necessary

we may in addition assume that it decides the value of Ḟ (̌i) – say this is ξ. We then

deduce that (q, ḋ) forces “ range(Ḟ ↾ ǐ) ⊆ {β < κ̌+ | ď(β, ξ̌) ≤ ǰ}”8 but the latter
set is, by normality of d ∈ V , a set in V of size < κ. A contradiction. □

Remark 3.26. Recall that at the beginning of this section we fixed a regular cardinal
µ ∈ (γ, κ0). We mentioned in Remark 3.13 that the importance of this parameter
will not be appreciate until we arrive at Section 4 – this is why we omitted it

7Note that in this process we can make sure that the witnessing ordinals ζi < θ increase.
8Here we use that d is subadditive; namely, that d(β0, ξ) ≤ d(β0, β1) for all β0 < β1 < ξ.
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during the discussion we had so far. Nonetheless, note that both Lemma 3.24 and
Corollary 3.25 apply for the particular choice θ := µ.

3.2. On Shelah’s problem. In this section we apply the analysis of the previous
section to answer Shelah’s Question 1.1. The proof is inspired by Shelah’s [She79].

Theorem 3.27. Assume the GCH holds. Let λ be a supercompact cardinal, γ < λ
a limit ordinal and ⟨δi | i < γ⟩ an increasing sequence of measurable cardinals above
λ with limit δ. Let µ ∈ (cf(γ), λ) be regular. Then, there is a generic extension
where δ = λ+γ and λ+γ+1 ∩ cof(µ) /∈ I[λ+γ+1].

Proof. Let λ, µ and ⟨δi | i < γ⟩ be as above. By preparing the universe we may
assume that the supercompactness of λ is indestructible under λ-directed-closed
forcings. To avoid potential conflicts with the application of Fact 2.26 we do make
the supercompactness of λ indestructible only under λ-directed-closed forcings that
preserve the GCH. This forcing itself preserves the GCH pattern from the ground
model [PRS23, §8.1]. Next force with the full support product of Levy-collapses

Coll(λ,<δ0)×
∏

1≤i<γ Coll((supj<i δj)
++, <δi).

Each of these posets is LIP((supj<i δj)
++, <δi) by virtue of the measurability of

the δi’s. Hence, by Lemma 3.8, SLIP(λ, ⟨δi | i < γ⟩) holds in the resulting generic
extension. In particular, SLIP(µ, ⟨δi | i < γ⟩) holds as well. Since λ was made
indestructible it remains supercompact. Also, δ becomes λ+γ .

Assume that the above model is our ground model, V . Now, we use the super-
compactness of λ to “reflect” the failure of approachability at δ+. More precisely:

Claim 1. Let d : [δ+]2 → cf(γ) be a subadditive normal coloring in V . Then, there

is a singular κ ∈ (µ, λ) and a stationary set S ⊆ Eδ+

κ+ such that the following hold:

(1) There is an increasing sequence of regular cardinals ⟨µ⟩⌢⟨κi | i < γ⟩ with
supi<γ κi = κ witnessing SLIP(µ, ⟨κi | i < γ⟩).

(2) For each α ∈ S, there is a subadditive normal coloring e : [κ+]2 → cf(γ)
such that, for each set-sized forcing poset P,

⊩P “α is d-approachable ↔ κ+ is e-approachable”.

Proof of claim. Let us consider the following set

E = {ρ < δ+ | (1)ρ ∧ (2)ρ ∧ (3)ρ}

where

(1)ρ: cof(ρ) < λ and cof(ρ) is a successor of a singular cardinal of cofinality cf(γ).
(2)ρ: There is an increasing sequence of regular cardinals ⟨ρi | i < γ⟩ converging

to cof(ρ)−, µ < ρ0, and SLIP(µ, ⟨ρi | i < γ⟩) holds.
(3)ρ: There is a normal subadditive coloring e : [cof(ρ)]2 → cf(γ) such that for

each set-sized forcing P, P forces “ρ is d-approachable ⇔ cof(ρ) is e-approachable”

We claim that E is stationary.
To show this, fix j : V → M be a δ+-supercompact embedding and let C ⊆ δ+

be an arbitrary club. We show that C intersects E. Set ρ := sup(j[δ+]) ∈ j(C)
and note that the following properties hold on the M -side of j:

(1) Clearly, cf(ρ) = δ+. So, cf(ρ) ∈ (j(µ), j(λ)) and it is the successor of a
singular with cofinality cf(γ).
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(2) The predecessor of cf(ρ) is the limit of the increasing sequence ⟨δi | i < γ⟩
of regular cardinals, µ < δ0, and SLIP(µ, ⟨δi | i < γ⟩) holds.

(3) The coloring e : [cf(ρ)]2 → cf(γ) defined by

e(α, β) := j(d)(j(α), j(β))

is normal and subadditive. In addition for each set-sized poset P ∈ M

⊩P “ρ is j(d)-approachable ⇔ cf(ρ) is e-approachable”

Clauses (1) and (2) are clear, so we just check (3): First e is subadditive just because
so is j(d). For normality, letting α < cf(ρ) and i < cf(γ) note that

|{β < α | e(β, α) ≤ i}| = |{β < α | j(d)(j(β), j(α)) ≤ i}| = |{β < α | d(β, α) ≤ i}|,

and the latter set has cardinality <δ, by normality of d.
Let P ∈ M be any set-sized poset and work in V [P]. Then, ρ is j(d)-approachable

if and only if j(d) is bounded on an unbounded subset of j[δ+]. (The left-to-right
implication is Fact 2.25, and the converse is just trivial.) In turn, j(d) is bounded
on an unbounded subset of j[δ+] if and only if e is bounded on an unbounded
subset of δ+ by the very definition of e. More formally, if j(d) is bounded on an
unbounded set A ⊆ j[δ+] with value i, e is bounded on j−1[A] ⊆ δ+ unbounded
with value i. If e is bounded on an unbounded set A ⊆ δ+ with value i, j(d) is
bounded on j[A] ⊆ j[δ+] unbounded with value i.

The above argument shows that ρ ∈ j(E) ∩ j(C). Thus, E is stationary. By
Fodor’s Lemma, there is S ⊆ E stationary where the map ρ 7→ cof(ρ) takes a
constant value < λ. This constant value is, by definition of E, a successor of a
singular cardinal κ < λ. Clearly, S and κ witness the required properties. □

Let I⃗, B⃗ witnesseses for SLIP(µ, ⟨κi | i < γ⟩) and G ∗ Ċ ⊆ P(µ, κ⃗, I⃗, B⃗) ∗
˙Coll(µ̌, κ̌+) generic. This forcing does not disturb the GCH pattern of V , so

Fact 2.26 still applies in V [G ∗ Ċ]. With this in mind we prove the following:

Claim 2. V [G ∗ Ċ] |= “δ+ ∩ cof(µ) /∈ I[δ+]”.

Proof of claim. Suppose towards a contradiction that the claim was false. In the
generic extension, S is a stationary subset of δ+∩cof(µ) because the forcing yielding
V [G ∗ Ċ] is small relative to δ+. We next show that S /∈ I[δ+] holds in V [G ∗ Ċ].

First, d : [δ+]2 → cf(γ) is a normal subadditive coloring in V [G ∗ Ċ] in that this
property is generic absolute. As a result, Fact 2.26 applies and we will be done after
showing that S∩S(d) = ∅ holds in V [G∗ Ċ]. By our prior analysis, a point α ∈ S is

d-approachable in V [G∗Ċ] if and only if there is a normal coloring e : [κ+]2 → cf(γ)

in V such that κ+ is e-approachable in V [G∗ Ċ]. Invoking Corollary 3.25 for θ := µ
we conclude that this latter condition is false and therefore that no α ∈ S is d-
approachable in V [G ∗ Ċ]. □

The above completes the proof of the theorem. □

Corollary 3.28. Assume the GCH holds. Let δ be a singular limit of supercompact
cardinals. For each regular µ ∈ (cf(δ), δ) there is a generic extension of the set-
theoretic universe where δ+ ∩ cof(µ) /∈ I[δ+]. □

The next corollary generalizes the main result of [JL25], where the authors solved
Shelah’s Question 1.1 for the case κ = ℵω.
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Corollary 3.29. Assume the GCH holds. Let λ be a supercompact cardinal, ℵγ

a singular cardinal and ⟨δi | i < γ⟩ an increasing sequence of measurable cardinals
above λ with limit δ. Let µ ∈ (cf(γ),ℵγ) be regular. Then, there is a generic
extension where ℵγ+1 ∩ cof(µ) /∈ I[ℵγ+1].

Proof. Let V denote the generic extension constructed in Theorem 3.27 and S the
stationary set λ+γ+1∩cof(µ). Force with the Levy collapse C := Coll(µ+, λ). In the
generic extension V [C], we have λ+γ+1 = ℵγ+1, S is stationary and we claim that

S∩S(d) = ∅ still holds. Assume for a contradiction that S∩S(d)V [C] is non-empty.
Let α ∈ S ∩ S(d)V [C] be arbitrary. By Fact 2.25, for every unbounded subset

A ⊆ α with otp(A) = µ, there exists an unbounded subset B ⊆ A on which d is
bounded. Since otp(B) = µ and C is <µ+-closed, it follows that B ∈ V . This
implies that α ∈ S ∩ S(d)V , contradicting our assumption in the ground model.
Hence, S ∩ S(d)V [C] is empty and thus, by Fact 2.26, S /∈ I[ℵγ+1]. □

3.3. On a model of Gitik and Sharon. In [GS08], Gitik–Sharon constructed
a model in which ℵω2 is strong limit, and both the Singular Cardinal Hypothesis
(SCH) and AP fail at ℵω2 . It turns out that in the model of [GS08], one cannot
predetermine the cofinality of the non-approachable stationary set S ⊆ ℵω2+1. The
obstacle, as usual, is that this cofinality is determined by cf(sup(M ∩ κ+ω+1)),
where M ≺ H(Θ) is a κ-Magidor model9 and κ is a κ+ω+2-supercompact cardinal.

In the next theorem, we generalize Gitik–Sharon’s result by showing that the
failure of SCH is consistent with the existence of a non-approachable stationary set
of any prescribed cofinality. More precisely, we show the following:

Theorem 3.30. Assume the GCH holds. Let λ be a supercompact cardinal, γ < λ
a limit ordinal and assume that there is an increasing sequence of length γ above λ
consisting of measurable cardinals. Then, for each regular cardinal µ ∈ (cf(γ),ℵγ2),
there is a generic extension where ℵγ2+1 ∩ cof(µ) /∈ I[ℵγ2+1] and SCHℵγ2 fails.

Proof. Let d : [δ+]2 → γ be a normal subadditive coloring, where δ is the supremum
of the aforementioned sequence of measurable cardinals. By the argument in The-
orem 3.27, there is a generic extension in which λ remains supercompact and there
exists a stationary set S ⊆ λ+γ+1 ∩ cf(µ) consisting of non-d-approachable points.
Working over this generic extension we first make λ indestructible under λ-directed-
closed forcings (see [Lav78]), and then force with Cohen forcing Add(λ, λ+ω+2). In
the resulting extension λ remains supercompact. We can arrange this latter two-
step iteration to be <µ+-directed-closed and λ+-cc. As a result, S remains station-
ary and no new d-approachable points of cofinality µ are added. Thus, S∩S(d) = ∅
also holds in this model. For simplicity, denote this extension by V .

Building upon work of Gitik–Sharon, Sinapova showed in her Ph.D. thesis [Sin08]

that in V there exists a Mitchell-increasing sequence U⃗ = ⟨Uξ | ξ < γ⟩ of normal

fine ultrafilters on Pλ(λ
+ξ), together with a sequence of guiding generics K⃗ = ⟨Kξ |

ξ < γ⟩ for the Levy collapse Coll(λ+γ+2, <jUξ
(λ))Ult(V,Uξ). Using this, she defined

a Magidor-style variant of the Gitik–Sharon forcing, denoted S(U⃗ , K⃗).

S(U⃗ , K⃗) satisfies the following properties:

(1) S(U⃗ , K⃗) is λ+γ+1-cc. (See [Sin08, §3]).

9In [GS08], the authors refer to these models as supercompact models. The terminology κ-
Magidor model is borrowed from [MV21b].
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(2) S(U⃗ , K⃗) collapses all cardinals in the interval (λ, λ+γ+1). (See [Sin08, §3])
(3) S(U⃗ , K⃗) forces “λ = κ̇+γ2

0 ”, where κ̇0 is the name for the first Prikry point.

(4) ⟨S(U⃗ , K⃗),≤,≤0⟩ has the Strong Prikry Property (See [Pov20, Lemma 3.18].)10

(5) There is a dense subposet of S(U⃗ , K⃗) whose ≤0-ordering is <µ+-closed.11

To simplify notations, let us denote the above dense subposet S.

Claim 3. ⊩S “Š ⊆ λ+γ+1 ∩ cof(µ) is stationary and Š ∩ Ṡ(ď) = ∅”.

Proof of claim. Clearly, S remains stationary by the chain condition of the forcing.
The reason why all points in S retain cofinality µ is essentially the same as that
explaining why S ∩ S(d)V [S] = ∅. Thus, we provide details only for the latter part.

It suffices to prove that for α < λ+γ+1 with cf(α) = µ, the truth value of “α is

not d-approachable” is not changed by forcing with S(U⃗ , K⃗). So let α < λ+γ+1 have
cofinality µ. Let A ⊆ α be unbounded with ordertype µ. By Fact 2.25, after forcing

with S(U⃗ , K⃗), α is d-approachable if and only if d is bounded on an unbounded

subset of A. However, since A has size µ in the ground model and S(U⃗ , K⃗) does
not add any new subsets of µ by point (5), α clearly remains non-d-approachable

after forcing with S(U⃗ , K⃗). □

Let G ⊆ S be a generic filter. In V [G], µ is a regular cardinal, λ = (κ+γ2

0 )V and
λ+ = (λ+γ+1)V . (Here κ0 = (κ̇0)G.) Now, force with Coll(µ+, <κ0). Let H be
a generic filter for this poset. In V [G ∗ H], κ0 becomes µ+ and λ = ℵγ2 because

orginally µ < (ℵγ2)V . In addition, this forcing does preserve the stationarity of S
and does not create new d-approachable points of cofinality µ. All in all, S does
not intersect S(d)V [G∗H], which yields ℵγ2+1 ∩ cof(µ) /∈ I[ℵγ2+1]. In V [G ∗H], ℵγ2

is a strong limit cardinal at which the SCH fails. □

4. Failure of Approachability at every Singular Cardinal

The main result of this section is Theorem B. Namely:

Theorem 4.1. Suppose that there is a class of supercompact cardinals. Then, there
exists a class forcing extension in which APκ fails for every singular cardinal κ.

Moreover, for each singular cardinal κ, there are unboundedly many regular car-
dinals δ < κ for which κ+ ∩ cof(δ) /∈ I[κ+].

From the above we immediately deduce the following corollary:

Corollary 4.2. Suppose that there is a class of supercompact cardinals. Then, there
exists a model of ZFC without special κ+-Aronszajn trees any singular cardinal κ.

The proof of this theorem consists of two parts: Given a regular cardinal µ and
a supercompact cardinal κ > µ, first we construct a forcing A(µ, κ) that collapses
κ to become µ+ which when followed with a class product of Levy collapses C, the
two-step iteration A(µ, κ) ∗ Ċ forces δ+ ∩ cof(µ) /∈ I[δ+] for every singular cardinal
δ > κ with cf(δ) < µ. In the second part we show how to iterate this construction
to produce a model where APδ fails for every singular δ.

10Technically, the proof of [Pov20, Lemma 3.18] is done for Sinapova’s forcing without inter-

leaved collapses, but a similar proof goes through even if one interleaves collapses.
11To show this, one just forces below a condition whose measure one sets concentrate on sets

x whose associated Prikry points are above µ.
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Let us begin defining the poset A(µ, κ). Recall that if κ is a supercompact
cardinal, ℓ : κ → Vκ is called a Laver function if for each set x and a regular
cardinal Θ ≥ κ such that x ∈ H(Θ) there is an elementary embedding j : V → M
with critical point κ, j(κ) > Θ, M is closed under Θ-sequences of its members
and j(ℓ)(κ) = x. In [Lav78], Laver showed that Laver functions always exist. This
makes sense of the next definition:

Definition 4.3 (The poset A(κ, µ)). Let µ be regular and κ > µ supercompact.
Fix a Laver function ℓ : κ → Vκ. We define a poset A(µ, κ) as the limit of an Easton-

support Magidor iteration of Prikry-type forcings (Pα, Q̇α)α<κ with the following

iterands: Suppose we have defined (Pβ , Q̇β)β<α. We let Pα be the Easton-support

Magidor limit of (Pβ , Q̇β)β<α. We let Q̇α be defined as follows:

• Case 1: Suppose that α is inaccessible, |Pβ | < α for every β < α and

ℓ(α) = (L̇α, ⟨δi | i < γ⟩, ˙⃗I, ˙⃗B)
where

– L̇α is a Pα-name for a <α-strategically closed poset.

– ⊩Pα∗L̇α
“ SLIP(µ̌, ⟨δ̌i | i < γ̌⟩) holds as witnessed by

˙⃗I and
˙⃗B”.

In this case, we let δ∗α := (supi<γ δi)
+ and let Q̇α be a Pα-name for

L̇α ∗ Ṗ(µ̌, ˇ⃗δ, ˙⃗I, ˙⃗B) ∗ ˙Coll(µ̌, δ̌∗α).

• Case 2: Otherwise, we let Q̇α be a Pα-name for ˙Coll(µ̌, |P̌α|).

We first justify the following easy properties of A(µ, κ):

Lemma 4.4. Let µ be regular and κ > µ supercompact.

(1) (A(µ, κ),≤,≤0) is a Prikry-type forcing and in fact with pure µ-decidability.
(2) (A(µ, κ),≤) and (A(µ, κ),≤0) are κ-cc.
(3) (A(µ, κ),≤0) is <µ-directed closed.
(4) (A(µ, κ),≤) forces “µ+ = κ”.

Proof. Point (1) follows from Lemma 2.14, together with Lemma 3.22, noticing
that we have assumed δ0 > µ and thus that the intermediate forcing has pure µ-
decidability by virtue of Lemma 3.22. Both parts of point (2) follow easily using
a ∆-system argument. Point (3) follows from Lemma 2.15. Point (4) follows from
standard genericity considerations. □

The following result is instrumental for our main theorem. Essentially, it says
that after forcing with A(µ, κ) not only {α < δ+ | α is not d-approachable} is
stationary, but also it remains stationary (and hence, non-approachable) in the
generic extension by any <κ-directed closed forcing P.

Theorem 4.5 (Indestructibility of ¬AP). Let µ be regular and κ > µ supercompact.

Let γ < µ be a limit ordinal and δ⃗ = ⟨δi | i < γ⟩ an increasing and continuous
sequence of regular cardinals with δ0 ≥ κ. Let δ := supi<γ δi and d : [δ+]2 → cf(γ)
be a normal, subadditive coloring.

Let G be A(µ, κ)-generic and work in V [G]. Whenever P is a <κ-directed closed

poset which preserves δ+, every δi and forces SLIP(µ, δ⃗), for any large enough
regular cardinal Θ there are stationarily many M ∈ [HV [G](Θ)]<κ such that:

(1) M ≺ HV [G](Θ).
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(2) A(µ, κ),P, d ∈ M .
(3) cf(sup(M ∩ δ+)) = µ and sup(M ∩ δ+) is not d-approachable.
(4) (Existence of master conditions) Whenever p ∈ P ∩ M there is a

condition p∗ ∈ P with p∗ ≤ p such that whenever D ∈ M is open dense in
P, there is q ∈ D ∩M with p∗ ≤ q.

Proof. Fix parameters as in the theorem and assume that they belong to H(Θ).
In V [G], let F : [HV [G](Θ)]<ω → [HV [G](Θ)]<κ be any function. We want to find
M ∈ [HV [G](Θ)]<κ which is closed under F and satisfies the additional requirements

(1)–(3). To this end, let Ḟ and Ṗ be A(µ, κ)-names with ḞG = Ḟ and ṖG = P.
Assume without loss of generality that the empty condition of A(µ, κ) forces Ṗ to

have the claimed properties. Let İi, Ḃi be P-names forced to witness SLIP(µ̌,
ˇ⃗
δ)

and Θ′ > Θ be a big enough regular cardinal such that Ḟ , Ṗ, İi, Ḃi ∈ HV (Θ′).

Let j : V → M be a |HV (Θ′)|-supercompact embedding for κ such that

j(ℓ)(κ) = (Ṗ, ⟨δi | i < γ⟩, ˙⃗I, ˙⃗B).

It follows that in M , we have

j(A(µ, κ)) = A(µ, κ) ∗ (Ṗ ∗ Ṗ(µ̌, ˇ⃗δ, ˙⃗I, ˙⃗B) ∗ ˙Coll(µ̌, δ̌+)) ∗ j(Ȧ)κ+1,j(κ)

where j(Ȧ)κ+1,j(κ) is forced to be an Easton support Magidor iteration of Prikry-
type forcings with pure µ̌-decidability and a < µ̌-closed pure extension ordering.

Let H be j(A(µ, κ))-generic over V such that j[G] ⊆ H. Then j lifts to

j : V [G] → M [H].

Let N ′ := j[HV (Θ′)][H] and N := N ′ ∩ HM [H](j(Θ)). We want to show that in
M [H], N is as required by the theorem with j applied to the parameters.

Claim 1. j(A(µ, κ)), j(P), j(d) ∈ N .

Proof of claim. This is clear by our choice of Θ′. □

Claim 2. N ≺ HM [H](j(Θ)), |N | < j(κ) and j(F )“[N ]<ω ⊆ N.

Proof of claim. Clearly, |N | < j(κ) as j(κ) > Θ′ = |N |. It is also routine to
check that N ′ ≺ HM [H](j(Θ′)). Using this one can show that N is closed un-
der j(F ): Given any (x0, . . . , xk) ∈ [N ]<ω there are (τ0, . . . , τn) ∈ HV (Θ′) such

that xi = j(τi)
H . By definition, j(Ḟ )H(j(τ0)

H , . . . , j(τk)
H) = j(ḞG(τG0 , . . . , τGk )) ∈

j[HV [G](Θ)] ⊆ HM [H](j(Θ′)). In addition, this very same value of j(F ) belongs to
N ′ := j[HV (Θ′)][H] as this is an elementary submodel of HM [H](j(Θ′)).

Finally, we argue thatN ≺ HM [H](j(Θ)). Suppose thatHM [H](j(Θ)) |= “∃xφ(x, a)”
for some a ∈ N. Then, the following holds in the bigger model HM [H](j(Θ′)):

“There is b ∈ HM [H](j(Θ)) such that HM [H](j(Θ)) |= φ(b, a)”.

This is a first-order formula with parameters {a, b, j(Θ)}, all of which available to
the model N ′. Thus, by elementarity, there is b ∈ N ′ ∩HM [H](j(Θ)) = N with the
previous property. As a result N ≺ HM [H](j(Θ)). □

Claim 3. cfM [H](sup(N ∩ j(δ+))) = µ.
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Proof of claim. Since j(κ) > Θ′, we have N ′∩ j(κ) ∈ j(κ). Ergo, since H is generic
for a j(κ)-cc forcing, it is a standard fact that N ′ ∩M = j[HV (Θ′)]. In particular,

N ∩ j(δ+) = N ′ ∩ j(δ+) = j[δ+]. Because of Coll(µ, δ+), cfM [H](sup j[δ+]) = µ.

For the reader’s benefit we provide the proof of the standard fact.
The ⊇-inclusion is clear. For the ⊆-inclusion, let τH ∈ N ′ ∩ M with τ ∈

j[HV (Θ′)]. Since j[HV (Θ′)] ≺ j(HV (Θ′)), there is a maximal antichain A ∈
j[HV (Θ′)] of conditions forcing τ = x̌ for some x ∈ j(HV (Θ′)). Since j(Q) is
j(κ)-cc, there is an enumeration f : µ → A for some cardinal µ < j(κ). By elemen-
tarity,

µ ∈ j[HV (Θ′)] ∩ j(κ) = N ′ ∩ j(κ) = κ ⊆ j[HV (Θ′)].

It follows that A = f [µ] ⊆ j[HV (Θ′)]. In particular, there is a condition q ∈
H ∩ j[HV (Θ′)] forcing “τ = x̌” for some x ∈ j(HV (Θ′)). By elementarity, x ∈
j[HV (Θ′)]. Thus, τH = x ∈ j[HV (Θ′)], as needed. □

Let us denote ρ := sup(j[δ+]) = sup(N ∩ j(δ+)).

Claim 4. ρ is not j(d)-approachable in M [H].

Proof of claim. In M , cf(ρ) = δ+. δ+ is regular after forcing with A(µ, κ) ∗ Ṗ and
is collapsed to have size and cofinality µ after forcing with

A(µ, κ) ∗ Ṗ ∗ Ṗ(ˇ⃗δ, ˙⃗I, ˙⃗B) ∗ ˙Coll(µ̌, δ̌+).

This is still the case in M [H] because µ is preserved. In summary,

M [H] |= “ cf(ρ) = cf(δ+) = µ”.

So we have to show that ρ is not j(d)-approachable in M [H]. As in the proof of
Theorem 3.27, in M , there is a normal subadditive coloring e on δ+ such that in
any set-sized forcing extension, ρ is not j(d)-approachable if and only if δ+ is not

e-approachable. After forcing with A(µ, κ) ∗ Ṗ, by assumption, δ+ and every δi are
cardinals and therefore e is still a normal, subadditive coloring. By Corollary 3.25,
δ+ is not e-approachable after forcing with

Ṗ(ˇ⃗δ, ˙⃗I, ˙⃗B) ∗ ˙Coll(µ̌, δ̌+).

Ergo, ρ is not j(d)-approachable in M [H ↾ κ+ 1] where H ↾ κ+ 1 is the A(µ, κ) ∗
Ṗ ∗ Ṗ(ˇ⃗δ, ˙⃗I, ˙⃗B) ∗ ˙Coll(µ̌, δ̌+)-generic filter induced by H.

Let us show that this is preserved by the tail forcing

R := j(Ȧ(µ, κ))H↾κ+1
κ+1,j(κ).

As stated before, R is a Prikry-type poset with pure µ-decidability and a <µ-
closed pure extension ordering. In M [H ↾ κ + 1], let ∆: µ → ρ be increasing and
cofinal. In M [H], ρ is j(d)-approachable if and only if there is an unbounded subset

of range(∆) on which j(d) is bounded (by Fact 2.25). So assume that Γ̇ is an R-
name for an increasing function from µ̌ into range(∆̌) such that j(d) is bounded
on its image (say, with value ζ̌), forced by some r ∈ R. We construct an increasing
sequence ⟨αi | i < µ⟩ of elements of µ and a ≤0-decreasing sequence ⟨ri | i < µ⟩ of
elements of R such that for any i < µ, ri ⊩ Γ̇(̌i) = ∆̌(α̌i). Assume that ⟨αj | j < i⟩
and ⟨rj | j < i⟩ have been constructed. Let r′i be a ≤0-lower bound of ⟨rj | j < i⟩
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(or ri = r if i = 0). Then r′i ⊩ ∃α < µ̌(Γ̇(̌i)) = ∆̌(α̌), so by the pure µ-decidability
of R we can find αi and ri ≤0 r′i such that

ri ⊩ Γ̇(̌i) = ∆̌(α̌i)

Since Γ̇ is forced to be increasing and ∆ is increasing, αi > αj for all j < i. Now
we claim that {∆(αi) | i < µ} is a cofinal subset of ρ on which j(d) is bounded
with value ζ, obtaining a contradiction as that set is in M [H ↾ κ+1]. First observe
that, because the sequence ⟨αi | i < µ⟩ is increasing, the set {αi | i < µ} is cofinal
in µ and so {∆(αi) | i < µ} is cofinal in ρ. Lastly, whenever j < i < µ, we have

ri ⊩ j(ď)(∆̌(α̌j), ∆̌(α̌i)) = j(ď)(Γ̇(ǰ), Γ̇(̌i)) ≤ ζ̌

so actually j(d)(∆(αj),∆(αi)) ≤ ζ. □

We complete the argument showing that N admits “master conditions” for j(P).

Claim 5. Whenever p ∈ j(P) ∩N there is a condition p∗ ∈ j(P) with p∗ ≤ p such
that whenever D ∈ N is dense open there is q ∈ D ∩N such that p∗ ≤ q.

Proof of claim. Fix j(p) ∈ j(P)∩N . By construction, we know that in M [H] there
is a filter K which is P-generic over M [G], which we can assume has p as a member.
By our assumptions, we know that M is closed under |P|-sequences and so j ↾ P is
a member of M [G]. In particular, j[K] := (j ↾ P)[K] is also a member of M [H],
since K ∈ M [H]. We have |K| < Θ′ < j(κ) and so by the <j(κ)-directed closure
of j(P) in M [H] there is a condition p∗ ∈ j(P) which is a lower bound of j[K]. We
claim that p∗ is required. To this end, let D ∈ N be open dense in j(P). By the
definition of N , D = j(E) for E ∈ HV [G](Θ′), E open dense in P. It follows that
there is q ∈ E ∩K. Then j(q) ∈ D ∩ j[K] ∩N and by construction, p∗ ≤ j(q). □

This finishes the proof. □

We obtain the following generalization to our answer of Shelah’s problem:

Theorem 4.6. Assume the GCH and that there is a supercompact cardinal κ to-
gether with a proper class of measurables. Let µ < κ be regular. Then, there is a
model of ZFC in which δ+ ∩ cof(µ) /∈ I[δ+] for every singular δ > κ with cf(δ) < µ.

Proof. Let G be A(µ, κ)-generic. Standard arguments show that the GCH pattern
survives in V [G]. In V [G], let ⟨κi | i ∈ On⟩ be an increasing and continuous
sequence such that κ0 = κ and κi is measurable whenever i is a successor. (Note
that we allow the existence of measurable cardinals that are limit of measurables.)

We force with C, the On-length Easton support product of Coll(κ++
i , <κi+1). By

the increasing closure of the posets (and Easton’s lemma, Fact 2.10) one can show
that C is tame in the sense of Friedman [Fri11]. In particular, all the standard
results from forcing theory apply to C and the resulting generic extension is a
model of ZFC. In the extension in C, all cardinals below κ = µ+ survive. Standard
arguments show that above κ all the V -cardinals of the form κi, κ

+
i and κ++

i remain
cardinals while the rest are collapsed. It also follows that the only singular cardinals
above κ in the extension are the κi’s that were formerly singular (see Lemma 4.10).

Let C ⊆ C be V [G]-generic. For each i ∈ On denote

Ci :=
∏

j≥i Coll(κ
++
j , <κj+1) and Ci :=

∏
j<i Coll(κ

++
j , <κj+1).
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Working in V [G ∗ C], let δ > κ be a singular cardinal with cfV [C](δ) < µ. Then,
there exists a limit ordinal γ such that δ = κγ .

Note that δ+∩ cof(µ) /∈ I[δ+] holds in V [G∗C] if and only if δ+∩ cof(µ) /∈ I[δ+]
holds in V [C ∩Ci] because the tail forcing Cγ is κ++

γ -distributive in V [C ∩Cγ ] (by
Easton’s lemma). Thus, it will be sufficient to check this latter property.

For each i < γ, κi is a measurable cardinal in V [G] and so Coll(κ++
i , <κi+1)

is a LIP(κ++
i , κi)-forcing. Combining this with Lemma 3.8 we infer that Cγ forces

SLIP(κ0, ⟨κi | i < γ⟩). So Cγ satisfies the requirements of Theorem 4.5. Let
d : [κ+

i ]
2 → cf(γ) be a normal, subadditive coloring in V and denote S := δ+∩cof(µ)

as computed in V [G]. Note that the definition of this set is absolute between V [G]
and V [G ∗ C]. By Fact 2.26, it suffices to show that S remains stationary after
forcing with Cγ and that it consists of points that are not d-approachable.

Claim 6. Working over V [G], Cγ forces that Š is stationary and Š ∩ Ṡ(ď) = ∅̌.

Proof of claim. Work in V [G]. We perform a density argument. Suppose that Ċ is
a Cγ-name for a club in δ+ as forced by a condition p ∈ Cγ . By Theorem 4.5, there

is M ≺ HV [G](Θ) and p ∈ Cγ such that ρ := sup(M ∩ δ+) non d-approachable,
cf(ρ) = µ, and p∗ is a (Cγ ,M)-master condition with p∗ ≤ p. Recall that this
means that whenever D ∈ M is open dense in Cγ , there is q ∈ D ∩M with p∗ ≤ q.

We claim that p∗ forces that ρ̌ ∈ Ċ ∩ Š. To this end, it suffices to show that p∗

forces Ċ ∩ ρ̌ to be unbounded in ρ̌. Given any ζ < ρ, let ζ ′ > ζ be with ζ ′ ∈ M .
The open dense set of all conditions in Cγ forcing η̌ ∈ Ċ for some η > ζ ′ is in M .
As a result, there is a condition q ∈ D ∩ M such that p∗ ≤ q. By elementarity,
there is a witnessing η in M . Therefore, p∗ forces Ċ to be unbounded in ρ̌.

Lastly, p∗ also forces “ρ is not d-approachable” because Cγ adds no new subsets
of µ and cf(ρ) = µ. (So, in fact, the weakest condition forces this property).

By density it follows that ⊩Cγ
“Š is stationary and Š ∩ Ṡ(ď) = ∅̌”. □

We are done with the theorem. □

Now we iterate the construction. To obtain enough instances of LIP along the
way we alternate the forcing A with the Levy-collapse. Additionally, in order to
show that there is a forcing which projects onto our tail and forces SLIP, we leave
a gap of two cardinals between the collapses (so that Lemma 3.8 applies). This
necessarily leads to gaps between the cofinalities at which AP fails. We do not
know if this is necessary, see Question 5.1.

Definition 4.7. Assume GCH. Let ⟨κα | α ∈ On⟩ be an increasing and continuous
sequence of cardinals such that κ0 = ℵ0 and κα is supercompact whenever α is a
successor. We define an Easton support Magidor iteration

((Pα,≤α,≤α,0), (Q̇α, ≤̇α, ≤̇α,0))α∈On

as follows: Assume that (Pβ , Q̇β)β<α has been defined. Let Pα be the Easton limit.

• Case 1: α is even. We let Q̇α be a Pα-name for ˙Coll(κ++
α , < κα+1)

• Case 2: α is odd. We let Q̇α be a Pα-name for Ȧ(κ++
α , κα+1).

Definition 4.8. Let β < α be ordinals. We let (Ṗβ,α, ≤̇β,α, ≤̇(β,α),0) be a Pβ-name

for a Prikry-type poset such that Pβ ∗ Ṗβ,α
∼= Pα.

So, in V [Pβ ], Pβ,α is the Easton support Magidor iteration of (Ṗβ,γ , Q̇γ)γ∈[β,α).
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Lemma 4.9. Let β < α be ordinals. Pβ forces that Ṗβ,α is a Prikry-type poset with
pure κ++

β -decidability and a <κ++
β -closed pure extension ordering. Additionally, if

α is a limit, then Ṗβ,α is forced to have almost pure κ+
α -decidability.

Proof. The decidability of Ṗβ,α follows from Lemma 2.14 together with Lemma 4.4.

Lemma 2.14 also implies the almost pure <κ+
α -decidability, as every Ṗβ,γ has it for

γ < α since it is of size <κ+
α . The closure of the pure extension ordering follows

from Lemma 2.15. □

So in particular, after forcing with Pβ , the tail forcing adds no new subsets of
κβ . This implies that we can define the class forcing extension as the “limit” of the
forcing extensions by Pβ for β ∈ On. Abusing notation a bit, we will refer to this
class forcing extension as an extension “by P”, treating P as the Easton support
limit of the class iteration (Pα, Q̇α)α∈On.

Lemma 4.10. After forcing with P, the class of cardinals consists of ℵ0 as well as
κα, κ

+
α and κ++

α for each α ∈ On.

Proof. It is clear that all V -cardinals which are not as in the statement of the lemma
are collapsed. We show that all the claimed cardinals are preserved. To this end, let
α ∈ On. Since Ṗα,β is forced to be a Prikry-type forcing with a <κ++

α -closed pure
extension ordering and pure κ++

α -decidability, it suffices to show that Pα preserves

κα, κ
+
α and κ++

α .

First assume that α is a successor. It follows that Pα−1 has size <κα and thus

preserves κα. Let Gα−1 be Pα−1-generic. Then Q̇Gα−1

α−1 is κα-cc (by standard facts
for the Levy collapse or by Lemma 4.4 for A) and thus preserves κα, κ

+
α and κ++

α .

Since Pα−1 ∗ Q̇α−1 = Pα, we are done.
Now assume α is a limit. By the previous paragraph it follows that a cofinal

set of cardinals below κα is preserved by P and thus κα is preserved as well. Now
assume in the first case that κα is singular. It follows that if κ+

α is collapsed by Pα,
that poset forces |κ+

α | = κα and thus cf(κ+
α ) < κα. However, this situation is not

possible, since for every β < α, Pα
∼= Pβ ∗ Ṗβ,α where |Pβ | < κα (and thus cannot

collapse κ+
α ) and Ṗβ,α is a Prikry-type forcing with almost pure κ+

α -decidability and
a <κ+

β -closed pure extension odering (thus it cannot add cofinal subsets of κ+
α of

ordertype ≤ κβ). For κ
++
α , simply note that because of the GCH, |Pα| ≤ κ+

α .
Lastly, assume in the second case that κα is regular. Then κα is in fact inaccessi-

ble and |Pβ | < κ for every β < κ. In particular, Pα is the direct limit of <κα-sized
forcing notions and thus κα-cc. It follows that κα, κ

+
α and κ++

α are preserved. □

Now we turn toward showing that, in V [P], APδ fails for every singular cardinal
δ. We intend to use Theorem 4.5. To apply this theorem, we need to find a poset
which projects onto the direct extension ordering on a suitable tail forcing and
forces SLIP.

Definition 4.11. Let β < α be ordinals. Let Gβ be Pβ-generic and work in V [Gβ ].
We define

Tβ,α :=
∏

γ∈[β,α) T((Ṗ
Gβ

β,γ , ≤̇
Gβ

β,γ), (Q̇
Gβ
γ , ≤̇Gβ

γ,0))

where we regard Q̇γ as a Pβ ∗ Ṗβ,γ-name.

By Lemma 2.16 and standard arguments, one sees the following:
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Lemma 4.12. Let β < α be ordinals. Let Gβ be Pβ-generic and work in V [Gβ ].
The poset Tβ,α is <κ++

β -directed closed. Moreover, there is a projection from Tβ,α

onto (ṖGβ

β,α, ≤̇
Gβ

(β,α),0). □

We show that we can actually apply Theorem 4.5 to Tβ,α:

Lemma 4.13. Let β < α be ordinals such that α is a limit. Let ⟨δi | i < γ⟩
for some limit ordinal γ enumerate the set {κj | j ∈ [β, α) is odd}. Then, inside
V [Gβ ], Tβ,α forces SLIP(κ++

β , ⟨δi | i < γ⟩).

Proof. We intend to use Lemma 3.8. For each i < γ, let δi = κji for some odd
ji ∈ (β, α). If ji = β + 1 or ji − 1 is a limit, let

Pi := T((Pβ,ji−1,≤β,ji−1), (Q̇
Gβ

ji−1, ≤̇
Gβ

ji−1))

if ji − 1 is a successor and ji ̸= β + 1, let

Pi := T((Pβ,ji−1,≤β,ji−1), (Q̇
Gβ

ji−1, ≤̇
Gβ

ji−1,0))× T((Pβ,ji ,≤β,ji), (Q̇
Gβ

ji
, ≤̇Gβ

ji,0))

It follows that Tβ,α =
∏

i<γ Pi. For the application of Lemma 3.8, observe the

following: If ji−1 is a limit, then (2supj<i δj )+ = κ++
ji−1, since supj<i δj = κji−1 and

the GCH holds. If ji − 1 is a successor, then supj<i δj = κ++
ji−2 = δ++

i−1.

Claim 1. For each i < γ, Pi is an LIP((2supj<i δj )+, δi)-forcing (where the empty
supremum is regarded as κβ).

Proof. Let i < γ.

Case ji = β + 1: Then, Pi is equivalent to the Levy-collapse

Coll(κ++
ji−1, < κji)

which certainly has the claimed properties.

Case ji − 1 is a limit: Then Pi = T((Pβ,ji−1,≤β,ji−1), (Q̇
Gβ

ji−1, ≤̇
Gβ

ji−1)). Note

that |Pji−1| ≤ κ+
ji−1 (because of the GCH) and Q̇Gβ

ji−1 is a Pji−1-name for the Levy

collapse ˙Coll(κ++
ji−1, <κji−1) and this is forced to be a LIP(κ++

ji−1, <κji−1)-forcing.
Thus, by Lemma 3.5,

T((Pβ,ji−1,≤β,ji−1), (Q̇
Gβ

ji−1, ≤̇
Gβ

ji−1))

is a LIP(κ++
ji−1, <κji−1)-forcing.

Case ji − 1 is a successor ordinal above β. Then

Pi = T((Pβ,ji−2,≤β,ji−2), (Q̇
Gβ

ji−2, ≤̇
Gβ

ji−2,0))× T((Pβ,ji ,≤β,ji), (Q̇
Gβ

ji−1, ≤̇
Gβ

ji−1,0)).

We have already shown that the second factor is a LIP(κ++
ji−1, <κji−1)-forcing.

Regarding the first factor of the product; namely,

T((Pβ,ji−2,≤β,ji−2), (Q̇
Gβ

ji−2, ≤̇
Gβ

ji−2,0)) :

First, Q̇Gβ

ji−2 is a Pji−2-name for Ȧ(κ++
ji−2, <κji−1). Thus the first factor has size

<κji and is <κ++
ji−2-directed closed. This together easily implies that Pi is a

LIP(κ++
ji−2, κji) = LIP((2supj<i δj )+, δi)-forcing. □

In summary, by Lemma 3.8, Tβ,α forces SLIP(κ++
β , ⟨δi | i < γ⟩). □

So now we can finally show our main theorem:
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Proof of Theorem 4.1. It follows from our analysis of the cardinal structure that
the class of singular cardinals in V [P] is given by the class of κα where α is a
limit ordinal and κα > α. So let α be with that property. Fix in V a normal
subadditive coloring d : [κ+

α ]
2 → cf(κα). We want to show that in V [P], there are

stationarily many points in κ+
α which are not d-approachable (by Fact 2.26 this

implies κ+
α /∈ I[κ+

α ]). To this end, it suffices to show that this is the case in V [Pα],

because for any γ > α, Ṗα,γ is forced not to add any new subsets of κ+
α by Lemma

4.9. So let β < α be an even successor ordinal such that α < κβ−1. Hence,

Pβ
∼= Pβ−1 ∗ Ȧ(κ++

β−1, κβ).

Let Gβ be Pβ-generic and Ṡ be a PGβ

β,α-name for the points of V [Gβ ]-cofinality κ++
β−1

that are not d-approachable in V [Gβ ][P
Gβ

β,α]. Then, as in Theorem 4.6, we claim:

Claim 2. Working in V [Gβ ], P
Gβ

β,α forces “Ṡ is stationary”.

Proof of clain. We perform a density argument. Let p0 ∈ PGβ

β,α be arbitrary.

Let γ be a limit ordinal and let ⟨δi | i < γ⟩ enumerate {κj | j ∈ [β, α) is odd}.12

Let Ċ be a ṖGβ

β,α-name for a club subset of κ+
α which, without loss of generality, is

forced to be such by p0. By Lemma 2.16, there is a projection

π : Tβ,α → (ṖGβ

β,α, ≤̇
Gβ

(β,α),0).

Let t0 ∈ Tβ,α such that π(t0) ≤ p0. (This exists in that π is a projection.)

Now we apply Theorem 4.5 inside V [Gβ ] to find (for Θ large enough regular)
M ≺ H(Θ) with |M | < κβ such that the following hold:

(1) M contains every relevant parameter (in particular, π, Ċ, ṖGβ

β,α, t0 and Tβ,α)

(2) cf(sup(M ∩ κ+
α )) = κ++

β−1 and sup(M ∩ κ+
α ) is not d-approachable.

(3) (Master condition) There is a condition t ∈ Tβ,α, t ≤ t0, such that
whenever D ∈ M is open dense in Tβ,α, there is q ∈ D ∩M with t ≤ q.

Note that we can indeed invoke Theorem 4.5 because by Lemma 4.12 and Lemma
4.13, Tβ,α is <κ++

β -directed closed and forces SLIP(κ++
β , ⟨δi | i < γ⟩).

Let p := π(t). Note that p ≤ p0 because π is order-preserving. We claim that

p forces (in (ṖGβ

β,α, ≤̇
Gβ

β,α)) that sup(M ∩ κ+
α ) is in Ċ. We will show this by showing

that p forces Ċ ∩ sup(M ∩ κ+
α ) to be unbounded in sup(M ∩ κ+

α ). To this end,

let ζ < sup(M ∩ κ+
α ). We can assume ζ ∈ M ∩ κ+

α . Given any q ∈ ṖGβ

β,α, q forces

that there exists some element of Ċ above ζ. By the almost pure κ+
α -decidability

of ṖGβ

β,α (see Lemma 4.9), there exists r≤̇Gβ

(β,α),0q and η < κ+
α such that r forces

that there exists some element of Ċ in the interval (ζ, η). Ergo, the set D of all

r ∈ ṖGβ

β,α such that for some ηr, r forces Ċ ∩ (ζ, ηr) to be nonempty, is open dense

in (ṖGβ

β,α, ≤̇
Gβ

(β,α),0). Since π is a projection, π−1[D] is open dense in Tβ,α. Ergo, by

Clause (3) above (i.e., t is a master condition) there exists r ∈ π−1[D] ∩ M with
t ≤ r and thus π(r) ∈ D ∩M with π(t) ≤ π(r). The corresponding ηπ(r) is in M

as well by elementarity. Ergo π(t) forces that there is some element of Ċ above ζ

and below sup(M ∩ κ+
α ). Since ζ was arbitrary, π(t) forces that Ċ is unbounded in

12In particular, κα = supi<γ δi
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sup(M ∩κ+
α ). In addition, the closure of ṖGβ

β,α in the pure extension ordering implies

that sup(M∩κ+
α ) is not d-approachable after forcing with that poset. Ergo, p forces

“ sup(M ∩ κ+
α ) is not d-approachable”. Thus, p forces “Ṡ ∩ Ċ ̸= ∅”, as needed.

□

We are done with the proof of the theorem. □

Remark 4.14. It follows easily from our proof that, after forcing with P, for every
singular cardinal κγ and every even β < γ with α < κβ−1, the set κ

+
γ ∩ cof(κ++

β−1) is

not a member of I[κ+
γ ]. In particular, there are stationarily many non-approachable

points of arbitrarily large cofinality. This disposes with the moreover assertion in
Theorem B.

5. Discussion and Open Questions

There is an interesting contrast between the results of this paper and [Jak25].
Namely, the poset which we devised in this paper to collapse the successor of a
singular cardinal without making it approachable has much stronger requirements
than the corresponding one from [Jak25]. Due to this, we had to separate our
collapses and thus were not able to obtain the failure of the approachability property
for all possible cofinalities below the singular cardinal, simultaneously. Thus we ask:

Question 5.1. Suppose that λ is a singular cardinal of uncountable cofinality. Is
there a model of ZFC plus “For every regular µ ∈ (cf(λ), λ) there is a stationary
subset of λ+ ∩ cof(µ) which is not in I[λ+]”?

Another relevant question regards the failure of the SCH. Answering a question
from [BNLHU20], in [Git21b] Gitik produces a model of ZFC where both AP and
SCH fail on a club class. A natural question is if this configuration can be combined
with Theorem B. More precisely we ask:

Question 5.2. Assuming a proper class of supercompact cardinals, is it consistent
with ZFC that the SCH fails on a club class and AP fails at every singular cardinal?

Combining Theorem B with a global failure of the SCH is a major open problem
for it would yield a negative solution to the following long-standing question:

Question 5.3 (Woodin, 80’s). Is the configuration “ℵω is strong limit and both
SCH and AP fail at ℵω” consistent with ZFC?

By a result of Jensen in the model of Theorem B there are no special κ+-
Aronsjzan trees for no singular cardinal κ. Thus, it is natural to ask:

Question 5.4. Assuming appropriate large cardinals, is it possible to have a model
of ZFC where the tree property holds at the successor of every singular cardinal?
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