Jonathan Osinski and Alejandro Poveda.   “Compactness characterisations of large cardinals with strong Henkin models

 Sean Cox, Alejandro Poveda and Jan Trlifaj. “Approximation properties of torsion classes

Tom Benhamou and Alejandro Poveda. “Non-normal Magidor-Radin types of forcing

Alejandro Poveda and Dima Sinapova“A model for the Ineffable Tree Property at $\aleph_{\omega+2}$ and Stationary Reflection at $\aleph_{\omega+1}$.

Gabe Goldberg and Alejandro Poveda.  Compactness phenomena in HOD

Alejandro Poveda. “Axiom A and supercompactness”

Accepted in Isr. Journal of Math.
T. Benhamou, S. Garti, and A. Poveda. 2023. “Negating the Galvin property.” Accepted J. London Math. Soc. Publisher’s Version
Journal of Mathematical Analysis and Applications, , 527 , 2.
A. Poveda. 2023. “Two results on extendible cardinals.” Accepted in Proc. Amer. Math. Society.
A. Poveda, A. Rinot, and D. Sinapova. Sigma-Prikry forcings III: down to $\aleph_\omega$ ” Advances in Mathematics.
T. Benhamou, S. Garti, M. Gitik, and A. Poveda. “Galvin’s property at non-normal filters”. Accepted in Journal of Mathematical Logic.
 Yair Hayut and Alejandro Poveda. “The Gluing Property”  Favorable Referee’s report from Journal of Mathematical Logic.
A. Poveda, A. Rinot, and D. Sinapova. 2022. Sigma-Prikry forcings II: Iteration Scheme.” Journal of Mathematical Logic. Publisher’s Version
A. Poveda. 2021. Contributions to the theory of Large Cardinals through the method of Forcings. The Bulletin of Symbolic Logic, 27, 2, Pp. 221-222.
J. Bagaria and A. Poveda. 2021. More on preservation of Large Cardinals under class Forcing.” Journal of Symbolic Logic. Publisher’s Version
A. Poveda, A. Rinot, and D. Sinapova. 2021. Sigma-Prikry forcings I: The Axioms.” Canadian Journal of Mathematics, 73, 5, Pp. 1205-1238.
M. Golshani and A. Poveda. 2021. The tree property at double successors of singular cardinals of uncountable cofinality with an arbitrary gap.”
Annals of Pure and Applied Logic, 172, 1.
Alejandro Poveda. 11/2020. Contributions to the theory of large cardinals through the method of Forcing.
Y. Hayut, M. Magidor, and A. Poveda. 2020. Identity crises between supercompactness and Vopenka’s Principle.” The Journal of Symbolic Logic, 87, 2, Pp. 626-648.
A. Poveda. 2020. The tree property at first and double successors of singular cardinals with an arbitrary gap.” Annals of Pure and Applied Logic, 171, 5.
A. Aviles, A. Poveda, and S. Todorcevic. 2017. Rosenthal compacta that are premetric of finite degree.” Fundamenta Mathematicae, 239, Pp. 259-278.