Publications

Submitted

Gabriel Goldberg, Alejandro Poveda and Jonathan Osinski “On the optimality of the HOD Dichotomy

Antonio Aviles, Gonzalo Martinez-Cervantes, Alejandro Poveda and Luis Saenz “A Banach space with L-orthogonal sequences but without L-orthogonal elements

Vincenzo Dimonte, Alejandro Poveda and Sebastiano Thei “The Baire and perfect set properties at singular cardinals

Manuel Cortés-Izurdiaga and Alejandro Poveda “Almost free modules, perfect decompositions and Enoch’s conjecture

Jonathan Osinski and Alejandro Poveda.   “Compactness characterisations of large cardinals with strong Henkin models

 Tom Benhamou and Alejandro Poveda. “Non-normal Magidor-Radin types of forcing

Alejandro Poveda and Dima Sinapova“A model for the Ineffable Tree Property at $\aleph_{\omega+2}$ and Stationary Reflection at $\aleph_{\omega+1}$.

2024

Sean Cox, Alejandro Poveda and Jan Trlifaj. “Approximation properties of torsion classes  Accepted in Bull. London Math. Soc.

Gabriel Goldberg and Alejandro Poveda.  Compactness phenomena in HOD Positive referee report from Forum Math. Sigma.

Alejandro Poveda. “Axiom A and supercompactness Accepted in Advances in Mathematics.

2023
 Isr. Journal of Math.
 
T. Benhamou, S. Garti, and A. Poveda. 2023. “Negating the Galvin property.” J. London Math. Soc. Publisher’s Version
 
Journal of Mathematical Analysis and Applications, , 527 , 2.
 
A. Poveda. 2023. “Two results on extendible cardinals.” Proc. Amer. Math. Society.
 
A. Poveda, A. Rinot, and D. Sinapova. Sigma-Prikry forcings III: down to $\aleph_\omega$ ” Advances in Mathematics.
 
T. Benhamou, S. Garti, M. Gitik, and A. Poveda. “Galvin’s property at non-normal filters”. Journal of Mathematical Logic.
 
 Yair Hayut and Alejandro Poveda. “The Gluing Property”   Journal of Mathematical Logic.
2022
A. Poveda, A. Rinot, and D. Sinapova. 2022. Sigma-Prikry forcings II: Iteration Scheme.” Journal of Mathematical Logic. Publisher’s Version
2021
A. Poveda. 2021. Contributions to the theory of Large Cardinals through the method of Forcings. The Bulletin of Symbolic Logic.
 
J. Bagaria and A. Poveda. 2021. More on preservation of Large Cardinals under class Forcing.” Journal of Symbolic Logic. Publisher’s Version
 
A. Poveda, A. Rinot, and D. Sinapova. 2021. Sigma-Prikry forcings I: The Axioms.” Canadian Journal of Mathematics, 73, 5, Pp. 1205-1238.
 
M. Golshani and A. Poveda. 2021. The tree property at double successors of singular cardinals of uncountable cofinality with an arbitrary gap.”
Annals of Pure and Applied Logic, 172, 1.
2020
Alejandro Poveda. 11/2020. Contributions to the theory of large cardinals through the method of Forcing.
 
Y. Hayut, M. Magidor, and A. Poveda. 2020. Identity crises between supercompactness and Vopenka’s Principle.” The Journal of Symbolic Logic, 87, 2, Pp. 626-648.
 
A. Poveda. 2020. The tree property at first and double successors of singular cardinals with an arbitrary gap.” Annals of Pure and Applied Logic, 171, 5.
2017
A. Aviles, A. Poveda, and S. Todorcevic. 2017. Rosenthal compacta that are premetric of finite degree.” Fundamenta Mathematicae, 239, Pp. 259-278.